1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skad [1K]
3 years ago
8

What two kinds of crust are involved in a subduction zone

Physics
1 answer:
Anarel [89]3 years ago
5 0

Answer:

Oceanic crust and continental crust

Explanation:

A subduction zone is normally between oceanic crust which is made of basalt and continental crust which is made of granite. Oceanic crust is denser than continental crust. So when oceanic crust collides with continental crusts, it subsducts underneath the continental crust since it is denser.

You might be interested in
Forces of 2 newtons and 3 newtons are acting on an object as shown in the drawing below. Calculate the resultant force in newton
Kipish [7]

Answer:

Hey mate

Your answer will be <u>5 N</u><u> </u><u>Upwards</u><u>.</u><u> </u>

I will explain this to you.

In the attachment we can see that there are two forces acting on the object from the same side. And we know that when force acts from the same direction. Then the total force

=> sum of all the forces in that particular direction.

I hope you got it :)

TheSarcasmic

5 0
3 years ago
What happens when an electron absorbs energy?
Klio2033 [76]

Answer:

C

Explanation:

Its because electron does its thing with energy to

its orbital

4 0
3 years ago
An astronaut with a mass of 91 kg is 0.30 m above the moons surface. The astronauts potential energy is 46 J. Calculate the free
Blababa [14]

Answer:

the free-fall acceleration on the moon is 1.68 m/s^2

Explanation:

recall the formula for the gravitational potential energy (under acceleration of gravity "g"):

PE = m * g * h

replacing with our values for the problem:

46 J = 91 * g * 0.3

solve for the "g" on the Moon:

g = 46 / (91 * 0.3)

g = 1.68  m/s^2

3 0
3 years ago
A spring with spring constant 11.5 N/m hangs from the ceiling. A 490 g ball is attached to the spring and allowed to come to res
Natalija [7]

Answer:

The time constant is \tau = 17.5 \ s    

Explanation:

From the question we are told that

   The spring constant is  k = 11.5 \  N/m

   The mass  of the ball is  m_b  = 490 \ g  = 0.49 \ kg

   The amplitude of the  oscillation t the beginning is x =  6.70 cm = 0.067 \  m

    The amplitude after time t is  x_t = 2.20 cm = 0.022 \  m

    The number of oscillation is N  = 30

Generally the time taken to attain the second amplitude is mathematically represented as

       t  = N  *  T                                            Here  T is the period of oscillation

         t = N * 2\pi \sqrt{\frac{m}{k} }

=>     t = 30 * 2 * 3.142 *  \sqrt{\frac{ 0.490}{11.5} }

=>     t = 38.88 \  s

Generally the amplitude at time t is mathematically represented as

         x(t) = x e^{-\frac{at}{2m} }

Here a is the damping  constant so

 at  t = 38.88 \  s ,  x_t = 2.20 cm = 0.022 \  m

So  

     0.022 = 0.067 e^{-\frac{a * 38.88}{2 * 0.490} }

=>  0.3284 = e^{-\frac{a * 38.88}{2 * 0.490} }

taking natural log of both sides

=>  ln(0.3284 ) = -\frac{a * 38.88}{2 * 0.490} }    

=>   a = 0.028

Generally the time constant is mathematically represented as

    \tau = \frac{m}{a}      

=> \tau = \frac{0.490}{  0.028}    

=> \tau = 17.5 \ s    

4 0
3 years ago
alculate the kinetic energies of (a) a 2.00×103-kg automobile moving at 100.0 km/h; (b) an 80.0-kg runner sprinting at 10.0 m/s;
zzz [600]

Answer:

(a) 7.72×10⁵ J

(b) 4000 J

(c) 1.82×10⁻¹⁶ J

Explanation:

Kinetic Energy: This can be defined energy of a body due to its motion. The expression for kinetic energy is given as,

Ek = 1/2mv²................... Equation 1

Where Ek = Kinetic energy, m = mass, v = velocity

(a)

For a moving automobile,

Ek = 1/2mv².

Given: m = 2.0×10³ kg, v = 100 km/h = 100(1000/3600) m/s = 27.78 m/s

Substitute into equation 1

Ek = 1/2(2.0×10³)(27.78²)

Ek = 7.72×10⁵ J

(b)

For a sprinting runner,

Given: m = 80 kg, v = 10 m/s

Substitute into equation 1 above,

Ek = 1/2(80)(10²)

Ek = 40(100)

Ek = 4000 J

(c)

For a moving electron,

Given: m = 9.10×10⁻³¹ kg, v = 2.0×10⁷ m/s

Substitute into equation 1 above,

Ek = 1/2(9.10×10⁻³¹)(2.0×10⁷)²

Ek = 1.82×10⁻¹⁶ J

8 0
3 years ago
Other questions:
  • A 12 v automobile battery is connected to an electric starter motor. the current through the motor is 246
    9·1 answer
  • Using a horizontal force of 200N,we intend to move a wooden cabinet across a floor at constant velocity.What is the friction for
    10·1 answer
  • Which area of this sound wave represents a compression?<br> A) <br> B) <br> C) <br> D)
    14·2 answers
  • A machine that changes only the direction of a force has a mechanical advantage of
    14·2 answers
  • What is a situation when you might travel at a high velocity, but with low acceleration?
    5·2 answers
  • 7. A scientific theory can change if (2 points) nobody wants to believe it it becomes too old the scientist who discovered it di
    15·1 answer
  • Write a message to Mr. Chang explaining why the groundwater heating system will warm the school more than the water heater syste
    11·2 answers
  • What is the speed of a wave with a frequency of 100 hz and a wave length of .5 m?
    5·2 answers
  • (PLEASE HELP ILL GIVE OUT BRAINLIEST) Mr. Hicks stands on top of the roof and drops water ball oons at passing students. He miss
    15·2 answers
  • A test charge gains 10 joules of potential energy as it moves through an electric field. It starts its movement at point 1 and e
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!