Hi there!
We can begin by solving for the linear acceleration as we are given sufficient values to do so.
We can use the following equation:
vf = vi + at
Plug in given values:
4 = 9.7 + 4.4a
Solve for a:
a = -1.295 m/s²
We can use the following equation to convert from linear to angular acceleration:
a = αr
a/r = α
Thus:
-1.295/0.61 = -2.124 rad/sec² ⇒ 2.124 rad/sec² since counterclockwise is positive.
Now, we can find the angular displacement using the following:
θ = ωit + 1/2αt²
We must convert the initial velocity of the tire (9.7 m/s) to angular velocity:
v = ωr
v/r = ω
9.7/0.61 = 15.9 rad/sec
Plug into the equation:
θ = 15.9(4.4) + 1/2(2.124)(4.4²) = 20.56 rad
i can <u>when do u need it by</u> working on it now!!!
To answer this problem, we will use the equations of motions.
Part (a):
For the ball to start falling back to the ground, it has to reach its highest position where its final velocity will be zero.
The equation that we will use here is:
v = u + at where
v is the final velocity = 0 m/sec
u is the initial velocity = 160 m/sec
a is acceleration due to gravity = -9.8 m/sec^2 (the negative sign is because the ball is moving upwards, thus, its moving against gravity)
t is the time that we want to find.
Substitute in the equation to get the time as follows:
v = u + at
0 = 160 - 9.8t
9.8t = 160
t = 160/9.8 = 16.3265 sec
Therefore, the ball would take 16.3265 seconds before it starts falling back to the ground
Part (b):
First, we will get the total distance traveled by the ball as follows:
s = 0.5 (u+v)*t
s = 0.5(160+0)*16.3265
s = 1306.12 meters
The equation that we will use to solve this part is:
v^2 = u^2 + 2as where
v is the final velocity we want to calculate
u is the initial velocity of falling = 0 m/sec (ball starting falling when it reached the highest position, So, the final velocity in part a became the initial velocity here)
a is acceleration due to gravity = 9.8 m/sec^2 (positive as ball is moving downwards)
s is the distance covered = 1306.12 meters
Substitute in the above equation to get the final velocity as follows:
v^2 = u^2 + 2as
v^2 = (0)^2 + 2(9.8)(1306.12)
v^2 = 25599.952 m^2/sec^2
v = 159.99985 m/sec
Therefore, the velocity of the ball would be 159.99985 m/sec when it hits the ground.
Answer:
Explanation:
Both are contact forces arising at the interface between two bodies. In the fluid this interface might be irregular, and it completely surrounds a submerged object. For a solid it is usually a single flat surface - but it can be a collection of surfaces, which do not need to be flat or regular, and which can surround the object
Upthrust occurs at a fluid-solid interface whereas normal reaction occurs at a solid-solid surface. However, it is possible to generate the same fluid-like phenomenon of upthrust by immersing a solid object in sand or small beads and agitating them to simulate the pressure of atoms. With
Answer: Squats and leg lifts
Explanation:
They strengthen your legs!