The product in simplest form is (x - 4)
<em><u>Solution:</u></em>
<em><u>Given expression is:</u></em>

We have to find the product in simplest form
In the given expression,
2x + 8 = 2(x+ 4)
We know that,

Therefore,

Substitute these in given expression

Cancel the common factors,

Thus the product in simplest form is (x - 4)
We know that m ║ n.
Let's first find the value 'x'.
When two lines are parallel, and a transversal is drawn, the angles on the same side of the transversal are equivalent.
This means that (5x + 16)° and (7x + 4)° are equivalent.
Equating them,
5x + 16 = 7x + 4
16 - 4 = 7x - 5x
12 = 2x
x = 12/2
x = 6°
Since we know the value of 'x', let's substitute them into the angles and find out the actual measurements.
5x + 16 = 5 × 6 + 16 = 30 + 16 = 46°.
7x + 4 = 7 × 6 + 4 = 42 + 4 = 46°.
Now let's find the value of 'y'.
If you observe carefully, (7x + 4)° and (y + 6)° form a linear pair.
This means that both those angles should add upto 180°.
Using that theory, the following equation can be framed:
(y + 6)°+ (7x + 4)° = 180°
Since we know the actual value of (7x + 4)°, let's substitute that value and move ahead.
(y + 6)° + 46° = 180°
y + 6 + 46° = 180
y + 52° = 180°
y = 180° - 52°
y = 128°
Therefore, the values of 'x' and 'y' are 46° and 128° respectively.
Hope it helps. :)
Answer:
Part a) Option d
Part b) Option a
Step-by-step explanation:
Part a
if we look at the options given and the data available
Option a) x^4+9
Putting x= 2 we get (2^4) + 9 =25
Putting x= 3 we get (3^4) + 9 =90 but f(x) =125 so not correct option
Option b) (4^x)+9
Putting x= 2 we get (4^2) + 9 =25
Putting x= 3 we get (4^3) + 9 =73 but f(x) =125 so not correct option
Option c) x^5
Putting x= 2 we get (2^5) =32 but f(x) =25 so not correct option
Option d) 5^x
Putting x= 2 we get (5^2) =25
Putting x= 3 we get (5^3) =125
Putting x= 4 we get (5^4) =625
So Option d is correct.
Part (b)
3(2)^3x
can be solved as:
=3(2^3)^x
=3(8)^x
So, correct option is a
This is the graph of the equation