Answer: The correct explanation is 2.
Explanation: The warm air is less dense (it expands) and thus it is lighter than the cold air so it will rise up to the floor. Therefore, when you place the heater on the floor it will warm the cold air which would then rise and be replaced by more cold air which would again get warm and rise and so on until the room is heated. This means that the correct explanation is 2.
On the other hand, if you put the heater at the ceiling, it will warm the cold air near the ceiling which would stay up there (it is lighter than the cold air under it). This means that the only way for the heat to spread from this ceiling level warm air to the lower levels is via conduction which is slow.
Magnetic force obeys an inverse square law with distance. ... If the distance between two magnets is halved the magnetic force between them will increase to four times the initial value.
When an object in simple harmonic motion is at its maximum displacement, its <u>acceleration</u> is also at a maximum.
<u><em>Reason</em></u><em>: The speed is zero when the simple harmonic motion is at its maximum displacement, however, the acceleration is the rate of change of velocity. The velocity reverses the direction at that point therefore its rate of change is maximum at that moment. thus the acceleration is at its maximum at this point</em>
<em />
Hope that helps!
That would be a the first law of newton's laws of motion because it stops from an external force
Answer:
A. The electric field points to the left because the force on a negative charge is opposite to the direction of the field.
Explanation:
The electric force exerted on a charge by an electric field is given by:
where
F is the force
q is the charge
E is the electric field
We see that if the charge is negative, q contains a negative sign, so the force F and the electric field E will have opposite signs (which means they have opposite directions). This is due to the fact that the direction of the lines of an electric field shows the direction of the electric force experienced by a positive charge in that electric field: therefore, a negative charge will experience a force into opposite direction.