Answer:
The period of the resulting oscillatory motion is 0.20 s.
Explanation:
Given that,
Spring constant 
We need to calculate the time period
The object is at rest and has no elastic potential but it does has gravitational potential.
If the object falls then the the gravitational potential change in to the elastic potential.
So,


Where,h = distance
k = spring constant
Put the value into the formula


Using formula of time period

Put the value into the formula


Hence, The period of the resulting oscillatory motion is 0.20 s.
Sound waves in air are a series of <span>periodic disturbances, </span><span>periodic condensations and rarefactions,</span><span> and high- and low-pressure regions. It is all of the above. The answer is letter D.</span>
Answer:

Explanation:
Given:
- angle of launch of projectile from horizontal,

- range of projectile,

<u>We have formula for the range of projectile:</u>

putting the respective values

is the velocity with which Tom should jump to land on the other roof.
Answer: Gradient Wind
Explanation:
Gradient wind, is the wind that accounts for air flow along a curved trajectory. It is an extension of the concept of geostrophic wind; for example the wind assumed to move along straight and parallel isobars (lines of equal pressure). The gradient wind represents the actual wind better than the geostrophic wind, especially when both wind speed and trajectory curvature are large, because they are in hurricanes and jet streams.
Answer:
200 km/hr
Explanation:
Since he goes 80km per hour, multiply this by 2.5 or two and a half hours.
80 x 2.5 = 200 km/hr.