That's a molecule of Butane.
It's made out of 4 Carbon atoms and 10 Hydrogen atoms.
The answer for the following question is explained below.
- <u><em>Therefore the work done is 130 kilo Joules.</em></u>
Explanation:
Work:
A force causing the movement or displacement of an object.
Given:
mass of the person (m) = 65 kg
height of the cliff (h) = 2000 m
To calculate:
work done (W)
We know;
According to the formula:
<u>W = m × g × h</u>
Where;
m represents mass of the person
g represents the acceleration due to gravity
where the value of g is;
<u> g = 10 m/ s²</u>
h represents the height of the cliff
From the above formula;
W = 65 × 10 × 2000
W = 130,000 J
W = 130 Kilo Joules
<u><em>Therefore the work done is 130 kilo Joules.</em></u>
Answer:
The mass of the rock is 
Explanation:
From the question we are told that
The length of the string is 
The angular velocity is 
The tension on the string is 
Generally the centripetal force acting on the rock is mathematically evaluated as

making m the subject of the formula

substituting values


Answer:
Explanation:
Newton's law of gravitation states that every particle of matter attracts any other particle in the universe with a force directly proportional to the product of there masses and inversely proportional to the square of the distance between them.
<u>This law is also called universal law because it is applicable to all masses at all distances irrespective of the medium</u>.
Answer:
(A) 88.92 cm
(B) 22.22 cm
Explanation:
distance (s) = 200 cm = 0.2 m
initial velocity (v) = 0 m/s
acceleration due to gravity (g) = 9.8 m/s^{2}
lets first find the time (T) it takes for the first drop to strike the floor
from s = ut + 
200 = 0 + 
200 = 
200 / 4.9 = 
T = 6.4
(A) When the first drop strikes the floor, how far below the nozzle is the second drop.
we can find how far the second drop was when the first drop hits the ground from the formula s = ut + 
where
- s = distance
- u = initial velocity = 0
- t = time, since the drops fall at regular (equal) intervals of time, the first drop striking the floor at the instant the fourth drop begins to fall there wold be 3 time intervals and this can be seen illustrated in the attached diagram. therefore the time of the second drop = 2/3 of the time it takes the first drop to strike the ground (
) - a = acceleration due to gravity = 9.8 m/s^{2}
substituting all required values we have
s = 0 + (
)
s = 0 + (
)
s = 88.92 cm
(B) When the first drop strikes the floor, how far below the nozzle is the third drop.
we can find how far the third drop was when the first drop hits the ground from the formula s = ut + 
where
- s = distance
- u = initial velocity = 0
- t = time, since the drops fall at regular (equal) intervals of time, the first drop striking the floor at the instant the fourth drop begins to fall there wold be 3 time intervals and this can be seen illustrated in the attached diagram. therefore the time of the third drop = 1/3 of the time it takes the first drop to strike the ground (
) - a = acceleration due to gravity = 9.8 m/s^{2}
substituting all required values we have
s = 0 + (
)
s = 0 + (
)
s = 22.22 cm