Well, st first we should find <span>initial momentum for the first person represented in the task which definitely must be :
</span>

And then we find the final one :

Then equate them together :
So we can get the velocity, which is

In that way, according to the main rules of <span>conservation of momentum you can easily find the solution for the second person.
Regards!</span>
Answer: 7291.2 joules
Explanation:
Work is done when force is applied on an object over a distance.
Thus, Workdone = Force X distance
Since Distance moved by box = 12 metres
mass of box = 62kg
Acceleration due to gravity when box was lifted is represented by g = 9.8m/s^2
Recall that Force = Mass x acceleration due to gravity
i.e Force = 62kg x 9.8m/s^2
= 607.6 Newton
So, Workdone = Force X Distance
Workdone = 607.6 Newton X 12 metres
Workdone = 7291.2 joules
Thus, 7291.2 joules of work was done.
This drag force is always opposite to the object's motion, and unlike friction between solid surfaces, the drag force increases as the object moves faster.
Answer:
Scientists have studied eclipses since ancient times. Aristotle observed that the Earth's shadow has a circular shape as it moves across the moon. He posited that this must mean the Earth was round. Another Greek astronomer named Aristarchus used a lunar eclipse to estimate the distance of the Moon and Sun from Earth