Gas, as the particles have the most energy, and thus move the most.
Answer:
287.30 g of FeCO₃
Solution:
The Balance Chemical Equation is as follow,
FeCl₂ + Na₂CO₃ → FeCO₃ + 2 NaCl
Step 1: Calculate Mass of FeCl₂ as,
Molarity = Moles ÷ Volume
Solving for Moles,
Moles = Molarity × Volume
Putting Values,
Moles = 2 mol.L⁻¹ × 1.24 L
Moles = 2.48 mol
Also,
Moles = Mass ÷ M.Mass
Solving for Mass,
Mass = Moles × M.Mass
Putting Values,
Mass = 2.48 mol × 126.75 g.mol⁻¹
Mass = 314.34 g of FeCl₂
Step 2: Calculate Mass of FeCO₃ formed as,
According to equation,
126.75 g (1 mole) FeCl₂ produces = 115.85 g (1 mole) FeCO₃
So,
314.34 g of FeCl₂ will produce = X g of FeCO₃
Solving for X,
X = (314.34 g × 115.85 g) ÷ 126.75 g
X = 287.30 g of FeCO₃
<h2>
brainlyest pleas</h2>
The density of magnesium will be 1.74 g/cm³ if 23.5 g of magnesium occupies 13.5 cm³
<h3>What is Density ?</h3>
Density is the measurement of how tightly a material is packed together.
It is defined as the mass per unit volume.
Given ;
- Mass = 23.5 g
- Volume = 13.5 cm³
Formula to calculate density ;
Density = mass / volume
=23.5 / 13.5 = 1.74 g/cm³
Hence, the density of magnesium will be 1.74 g/cm³ if 23.5 g of magnesium occupies 13.5 cm³.
Learn more about density here ;
brainly.com/question/15164682
#SPJ1
Explanation:
here's the answer to your question