the force between the electron and the proton.
a) Use F = k * q1 * q2 / d²
where k = 8.99e9 N·m²/C²
and q1 = -1.602e-19 C (electron)
and q2 = 1.602e-19 C (proton)
and d = distance between point charges = 0.53e-10 m
The negative result indicates "attraction".
the radial acceleration of the electron.
b) Here, just use F = ma
where F was found above, and
m = mass of electron = 9.11e-31kg, if memory serves
a = radial acceleration
the speed of the electron.
c) Now use a = v² / r
where a was found above
and r was given
<span> the period of the circular motion.</span>
d) period T = 2π / ω = 2πr / v
where v was found above
and r was given
The dissolution of a solute in a solvent to form a solution usually occur in three steps, which are delta H1, delta H2 and delta H3.
For dissolving an ionic solid, the lattice energy, which is the energy that is holding the ionic particles in place correspond to DELTA H2 and it is the energy that must be conquered. The higher the charge in the ionic solid, the higher the lattice energy. The lattice energy must be overcome in order for the solid to dissolve.
Answer:
Your correct answer is A. 1,2,1,2
Explanation:
Please mark brainliest!
To be honest, I learned this in school so I'll tell you XD
The formula of sodium oxide is Na2O