Answer:
The concentration of O2 will begin decreasing and The concentrations of CO2 and O2 will be equal.
Explanation:
Equilibrium occurs when the velocity of the formation of the products it's equal to the velocity of the formation of the reactants, thus the concentrations of the compounds remain constant.
Analyzing the information and the reaction given, we can notice that in equilibrium the rate (velocity) of formation of O2 (product) is equal to the rate of formation of CO2 (reactant).
As the CO2 and H2O are placed in the reaction, the Le Chateliêr's principle states that the equilibrium must shift to reestablish the equilibrium, thus, they must be consumed, and the concentration of O2 must increase.
As state above, in equilibrium, the concentrations didn't change, thus, the concentrations of CO2 and O2 will not change.
The concentrations of CO2 and O2 depends on the rate of the reaction and the initial quantities presented, so it's not possible to affirm they'll be equal.
Answer:
0.297 mol/L
Explanation:
<em>A chemist prepares a solution of potassium dichromate by measuring out 13.1 g of potassium dichromate into a 150 mL volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the chemist's potassium dichromate solution. Be sure your answer has the correct number of significant digits.</em>
<em />
Step 1: Calculate the moles corresponding to 13.1 g of potassium dichromate
The molar mass of potassium dichromate is 294.19 g/mol.
13.1 g × (1 mol/294.19 g) = 0.0445 mol
Step 2: Convert the volume of solution to L
We will use the relationship 1 L = 1000 mL.
150 mL × (1 L/1000 mL) = 0.150 L
Step 3: Calculate the concentration of the solution in mol/L
C = 0.0445 mol/0.150 L = 0.297 mol/L
Answer:
see below
Explanation:
for A + 2B => Products ...
Rate Law => Rate =k[A][B]ˣ
As shown in expression, A & B are included, C is not.
Answer:
6 x 10⁵ kg Hg
Explanation:
The mass of mercury in the entire lake is found by multiplying the concentration of the mercury by the volume of the lake.
The volume of the lake is calculated in cubic feet:
V = (SA)x(depth) = (100mi²)(5280ft/mi)² x (20ft) = 5.57568 x 10¹⁰ ft³
Cubic feet are then converted to mL (1cm³=1mL)
(5.57568 x 10¹⁰ ft³) x (12in/ft)³ x (2.54cm/in)³ = 1.578856752 x 10¹⁵ mL
The mass of mercury is then found:
m = CV = (0.4μg/mL)(1g/10⁶μg)(1kg/1000g) x (1.578856752 x 10¹⁵ mL) = 6 x 10⁵ kg Hg