The reaction of Mg Cl2 and KOH can be described as a double substitution type of reaction. This means the cations of the reactants are exchanged in places when the products are formed. In this case, the balanced reaction is expressed
MgCl2 (s) + 2KOH (aq) = Mhg (OH)2 (aq) + 2KCl (s)
The atomic mass would not change since the mass of an electron is negligible compared to the mass of protons and neutrons
360 mg / 1000 => 0.36 g
molar mass => 180 /mol
number of moles:
mass of solute / molar mass
0.36 / 180 => 0.002 moles
Volume solution = 200 mL / 1000 => 0.2 L
M = n / V
M = 0.002 / 0.2
M = 0.01 mol/L
hope this helps!
Answer:
1x10^-8 M
Explanation:
Since the solution turns blue, it mean the solution is a base.
Now, to know which option is correct, we need to determine the pH of each solution. This is illustrated below:
1. Concentration of Hydrogen ion, [H+] = 1x10^-2 M
pH =..?
pH = - log [H+]
pH = - log 1x10^-2
pH = 2
2. Concentration of Hydrogen ion, [H+] = 5x10-2 M
pH =..?
pH = - log [H+]
pH = - log 5x10^-2
pH = 1.3
3. Concentration of Hydrogen ion, [H+] = 5x10 M
pH =..?
pH = - log [H+]
pH = - log 5x10
pH = - 1.7
4. Concentration of Hydrogen ion, [H+] = 1x10-8 M
pH =..?
pH = - log [H+]
pH = - log 1x10^-8
pH = 8
A pH reading shows if the solution is acidic or basic. A pH reading between 0 and 6 indicates an acidic solution, a pH reading of 7 indicates a neutral solution while a pH reading between 8 and 14 indicates a basic solution.
From the above calculations, the pH reading indicates a basic solution when the hydrogen ion concentration was 1x10^-8 M.
Answer:
Rate depends on the rate constant. The rate constant depends on temperature and activation energy. If you have lower activation energy the rate will be higher. This is why catalysts are added since catalysts provide an alternate pathway that requires lower activation energy and catalysts are added to increase the rate of reaction.
Explanation:
This is only the answer if you were asking:
"Which corresponds to the faster rate: a mechanism with a small activation energy or one with a large activation energy?"
Thats what I understood about your question.