<span>Water is vital to the existence of plant life. Not only do plants use it to keep their cells from drying out, but they need water to move nutrients and raw materials throughout their systems to areas where photosynthesis and seed production take place. When water stress occurs, whether caused by drought or root impairment, many invisible processes are affected.</span>
<h3>
Answer:</h3>
322.7 kW
<h3>
Explanation:</h3>
- Power refers to the rate at which work is done.
- Therefore; Power = Work done ÷ time
- It is measured in joules per seconds or Watts
In this case, we are required to convert 0.3227 MW to kilowatts
We need to know that;
- 10^6 watts = 1 Megawatts(MW)
- 10^3 Watts = 1 kilowatts (kW)
Therefore;
10^3 kW = 1 MW
Therefore, the suitable conversion factor is 10^3kW/MW
Hence;
0.3227 MW is equivalent to;
= 0.3227 MW × 10^3kW/MW
= 322.7 kW
Thus, the peak power output is 322.7 kW
1 --> Jaws
2 --> Four limbs
4 --> Mammary & fur
5 --> Walking on two legs
Answer:
Explained below.
Explanation:
The difference between the two of them will be considered from their electrostatic potential maps.
First of all the major difference is that ammonia molecule(NH3) has a lone lone pair of electron on the N atom.
Due to the this lone pair of electron on the N - atom of ammonia, it's bond angle will be slightly lesser than that of ammonium ion.
Therefore, In the electrostatic potential map of NH3, the charge distribution will not be symmetrical for the fact that there is electron rich N atom and so the N atom will be more red than the 3 hydrogen atoms (H atoms).
Whereas, the electrostatic potential map of NH4+ (ammonium ion) will be symmetrical due to the even/symmetrical distribution of all the 4 hydrogen atoms surrounding the central Nitrogen atom.
Also, the Nitrogen atom here in ammonium ion will have a lower electron density than the Nitrogen atom that's present in ammonia molecule due to the bonding existing between the lone pair electron and the Hydrogen atom
Answer:
The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas.