Answer:
T = 5163.89 N
Explanation:
Newton's first law:
∑F =0 Formula (1)
∑F : algebraic sum of the forces in Newton (N)
We define the x-axis in the direction parallel to the movement of the car on the ramp and the y-axis in the direction perpendicular to it.
Forces acting on the car
W: Weight of the car : In vertical direction
FN : Normal force : perpendicular to the ramp
T :Tension force: at angle of 31.0° above the surface of the ramp
Calculated of the Weight of the car (W)
W = m*g m: mass g:acceleration due to gravity
W = 1130-kg* 9.8 m/s² = 11074 N
x-y weight components
Wx = 11074 N*sin 25.0° = 4680.07 N
Wy = 11074 N*cos 25.0° = 10036.45 N
x-y Tension components
Tx = T*cos 25.0°
Ty = T*sin 25.0°
Newton's first law:
∑Fx =0 Formula (1)
Tx-Wx = 0
T*cos 25.0° - 4680.07 = 0
T*cos 25.0° = 4680.07
T = 4680.07 / cos 25.0°
T = 5163.89 N
The correct answer is c) 28 m/s.
Let's find the step-by-step solution. The motion of the monkey is an uniformly accelerated motion, with acceleration equal to

. The initial velocity of the monkey is zero, while the distance covered is S=40 m. Therefore, we can use the following relationship to find vf, the final velocity of the monkey:

from which
Answer:
<em>P=mgh</em>
<em>P=mghm=55</em>
<em>P=mghm=55g=9.8 or ~10</em>
<em>P=mghm=55g=9.8 or ~10h=27</em>
Explanation:
<em>hope</em><em> it</em><em> will</em><em> help</em><em> you</em><em> have</em><em> a</em><em> great</em><em> day</em><em> bye</em><em> and</em><em> Mark</em><em> brainlist</em><em> if</em><em> the</em><em> answer</em><em> is</em><em> correct</em>
<em>
</em>
<em> </em><em>#</em><em>c</em><em>arry </em><em>on </em><em>learning</em>
Answer:
Therefore, the moment of inertia is:
Explanation:
The period of an oscillation equation of a solid pendulum is given by:
(1)
Where:
- I is the moment of inertia
- M is the mass of the pendulum
- d is the distance from the center of mass to the pivot
- g is the gravity
Let's solve the equation (1) for I


Before find I, we need to remember that
Now, the moment of inertia will be:
Therefore, the moment of inertia is:
I hope it helps you!
<span>The pythagorean theorem addresses the length of the hypotenuse in relation to the length of the legs. The square root of the length of the hypotenuse is equal to the sum of one leg squared plus the other leg squared. In other words, A squared plus B squared equals C squared where A and B are the lengths of the legs of the triangle and C is the length of the hypotenuse.</span>