Answer:
41.74 m/s
Explanation:
The energy used to draw the bowstring = the kinetic energy of the arrow.
Fd = 1/2mv²................................ Equation 1
Where F = force, d = distance move string, m = mass of the arrow, v = speed of the arrow.
make v the subject of the equation
v = √(2Fd/m)...................... Equation 2
Given: F = 201 N, m = 0.3 kg, d = 1.3 m.
Substitute into equation 2
v = √(2×201×1.3/0.3)
v = √(1742)
v = 41.74 m/s.
Hence the arrow leave the bow with a speed of 41.74 m/s
Answer:
x-component of force is 38.18 lb where as magnitude of Force is 93.16
Explanation:
Fy of the force F exerted on the handle of the box wrench = 86 lb
Considering the triangle in Fig 1
magnitude of perpendicular = P = 12
magnitude of base = B = 5
using Pythagoras theorem



y-component of force is given given as:

Yes. Think of block sitting on top of a bigger block. If the bottom block moves, it will drag the top block with it. Since the force of friction on the small block and its displacement are in the same direction, the "work" is positive. The static friction is a passive force, It is not a source of energy; it transmits the force placed on the bottom block. (And the "work" done by the friction on the bottom block is exactly the negative of the work done on the top block.)
Gravity slows the upward speed of any rising object by 9.8 m/s every second.
If the ball is tossed upward at 20 m/s, then it's at the top of its arc and its speed has dwindled to zero in (20/9.8) = 2.04 seconds.
During that time, its starting speed is 20 m/s and its ending speed is zero, so its AVERAGE speed all the way up is (1/2) (20 + 0) = 10 m/s .
Sailing upward for 2.04 seconds at an average speed of 10 m/s, the ball rises to (2.04 x 10) = <em>20.4 meters.</em>