True or false: while riding a bicycle up a gentle hill, it fairly easy to increase your potential energy, but to increase your kinetic energy would ...
Answer:
<u>Inelastic collision:</u>
A collision in which there is a loss of Kinetic Energy due to internal friction of the bodies colliding.
<u>Characteristics of an inelastic collision:</u>
- <em>the momentum of the system is conserved</em>
- <em>the momentum of the system is conservedloss of kinetic energy</em><u> </u>
<em>I</em><em>n</em><em> </em><em>a perfectly elastic collision</em><em>, the two bodies </em><em>that</em><em> </em><em>collide with each other stick together.</em>
<u>Elastic </u><u>collision</u><u>:</u>
A collision in which the kinetic energy of the two bodies, before and after the collision, remains the same.
<u>Characteristic</u><u>s</u><u> </u><u>of</u><u> </u><u>elastic</u><u> </u><u>collision</u><u>:</u>
- <em>the</em><em> </em><em>momentum</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>system</em><em> </em><em>is</em><em> </em><em>conserved</em>
- <em>no</em><em> </em><em>loss</em><em> </em><em>o</em><em>f</em><em> </em><em>kinetic</em><em> </em><em>energy</em>
In everyday life, no collision is perfectly elastic.
__________________
ANSWER:
<u>Given examples:</u>
- Two cars colliding with each other form an example of inelastic collision.
<u>Reason:</u>
<em>(</em><em>T</em><em>hey</em><em> </em><em>lose</em><em> </em><em>kinetic</em><em> </em><em>energy</em><em> </em><em>and</em><em> </em><em>come</em><em> </em><em>to</em><em> </em><em>a</em><em> </em><em>stop</em><em> </em><em>after</em><em> </em><em>the</em><em> </em><em>collision</em><em>.</em><em>)</em>
- A ball bouncing after colliding with a surface is an example of elastic collision
<u>Reason:</u>
<em>(a very less amount of kinetic energy is lost)</em>
IMA stands for ideal mechanical advantage, which is the theoretical force amplification factor on an ideal mechanical device free of friction, deformations, etc.
If the applied force (effort) is 50N, then the force applied to the resistance is multiplied by the IMA=2 to get 100N.
Answer:
x-component of velocity = 5.7 m/s
y-component of velocity = -1.4 m/s
Explanation:
Use first equation of motion to find components of velocity at a given time:

where,
is the final velocity,
is the initial velocity,
is the acceleration and
is the time.
Given:



Answer:
Cycles per second is dependent on the construction of the alternator and the 120 volts is dependent upon the current and resistance in the circuit according to the ohms law.
Explanation:
We are given with AC of 120 volts, 20 amperes and 60 hertz frequency.
<u>According to the Ohm's law, we find its resistance:</u>



So, this 6 ohm resistance controls the current controls the magnitude of the AC current, while the frequency of the current remains constant and depends upon the construction and rotational speed of the armature of the alternator producing the current.
Here the value of frequency is the number of times the current changes its direction or the polarity in one second.