Answer:
4.5 s, 324 ft
Explanation:
The object is projected upward with an initial velocity of

The equation that describes its height at time t is
(1)
where t, the time, is measured in seconds.
In order to find the time it takes for the object to reach the maximum height, we must find an expression for its velocity at time t, which can be found by calculating the derivative of the position, s(t):
(2)
At the maximum heigth, the vertical velocity is zero:
v(t) = 0
Substituting into the equation above, we find the corresponding time at which the object reaches the maximum height:

And by substituting this value into eq.(1), we also find the maximum height:

Answer:
look at my Explanation
Explanation:
If the Maggie's mass is 100.0 kg and the truck is 1810 kg, calculate the magnitude of the net (unbalanced) force that can cause the acceleration.
I believe it is C hope i helped!
Answer:
The question is incomplete, below is the complete question "A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arrow = (2.00 m)i hat − (3.00 m)j + (2.00 m)k, the force is F with arrow = Fxi hat + (7.00 N)j − (5.00 N)k and the corresponding torque about the origin is vector tau = (4 N · m)i hat + (10 N · m)j + (11N · m)k.
Determine Fx."

Explanation:
We asked to determine the "x" component of the applied force. To do this, we need to write out the expression for the torque in the in vector representation.
torque=cross product of force and position . mathematically this can be express as

Where
and the position vector

using the determinant method to expand the cross product in order to determine the torque we have
![\left[\begin{array}{ccc}i&j&k\\2&-3&2\\ F_{x} &7&-5\end{array}\right]\\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2%26-3%262%5C%5C%20F_%7Bx%7D%20%267%26-5%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C)
by expanding we arrive at

since we have determine the vector value of the toque, we now compare with the torque value given in the question

if we directly compare the j coordinate we have
