Answer:
1. Newton's third law of motion
2. Unbalanced
3. Action
<h2>Heptene formed is -</h2><h2>

</h2>
Explanation:
The two possibilities when the peroxide is not present
+ HBr →
In presence peroxide,
≡
+ HBr →
- When peroxides are present in the reaction mixture, hydrogen bromide adds to the triple bond of heptane with regioselectivity.
- This reaction is opposite to that of Markovnikov's rule which says that when asymmetrical alkene reacts with a protic acid HX, then the hydrogen of an acid is attached to the carbon with more in number of hydrogen substituents, and the halide (X) group is attached to the carbon with more in number of substituents of alkyl.
- One mole of HBr adds to one mole of 1-heptane.
- The structure of heptene formed is -

<h2>The required "options are (II), (III), and (IV)".</h2>
Explanation:
Postulates of Dalton's atomic theory which are scientifically accepted are:
- Atoms are indestructible.
- Compounds are combinations of different atoms.
- A chemical reaction changes the way atoms are grouped together.
Postulates of Dalton's atomic theory which are not accepted scientifically are:
- All atoms of the same elements are identical.
The theory states that the atoms of the same element are identical in every aspect but it is now scientifically proved that the same element should differ in their mass which is known as isotopes.
Proton = +1
neutron = 0
electron = -1
Options are as follow,
A) <span>Constant volume, no intermolecular forces of attraction,energy loss in collisions
B) </span><span>No volume, strong intermolecular forces of attraction, perfectly elastic collisions
C) </span><span>Constant volume, no intermolecular forces of attraction, energy gain during collisions
D) </span><span>No volume, no intermolecular forces of attraction, perfectly elastic collisions
Answer:
Option-D (</span>No volume, no intermolecular forces of attraction, perfectly elastic collisions) is the correct answer.
Explanation:
As we know there are no interactions between gas molecules due to which they lack shape and volume and occupies the shape and volume of container in which they are kept. So, we can skip Option-B.
Secondly we also know that the gas molecules move randomly. They collide with the walls of container causing pressure and collide with each other. And these collisions are perfectly elastic and no energy is lost or gained during collisions. Therefore Option-A and C are skipped.
Now we are left with only Option-D, In option D it is given that ideal gas has no volume. This is true related to Ideal gas as it is stated in ideal gas theories that molecules are far apart from each other and the actual volume of gas molecules compared to volume of container is negligible. Hence, for ideal gas Option-D is a correct answer.