Answer:
See the explanation below
Explanation:
This problem can be better understood graphically, so in the attached image we will use a diagram of a positive displacement air pump.
We can see that when she pushes the plunger, we see that the volume decreases.
Would presume you are asked to find the volume, since there is no second volume.
By General Gas Law:
P₁V₁/T₁ = P₂V₂/T₂
1.6 * 168 /255 = 1.3*V₂/285
V₂ = 1.6 * 168 * 285 / (1.3*255)
V₂ = 231.095
Final volume ≈ 231 cm³
The work done on the car is -20 J.
Work done on the car is negative, meaning that the car actually does work on the external system.
<h3>Energy and law of conservation of energy</h3>
- Energy is the ability to do work
- the law of conservation of energy states that the total energy in a system is conserved
From the law of conservation of energy, the initial energy of the car before it moves down the road remains constant or unchanged.
- Initial energy = 100 J
- Initial energy = Final energy - work done on car
- Final Energy = Work done on car + initial energy
80J = Work done on car + 100 J
Work done on car = 80 - 100J
Work done on car = -20 J
Hence, the work done on the car is -20 J
Work done on car is negative.
Since work done on the car is negative, it means that the car actually does work on the external system. Hence, the decrease in the energy of the car.
Learn more about energy and work at: brainly.com/question/13387946
There are two types of electric charges; positive and negative
- If you need more info than this let me know
- hope this helps