There are a few ways to do this- unfortunately different fields are better at it than others! Medical research is generally pretty good, some other fields likewise very good, some not as much.
Basically, though, what they do is use standadisation- they agree on the terminology, units of data, statistical measures, and so forth, that will be used in that scientific field. As much as possible, every scientist in the field uses those standards so everyone working in the field should recognise it.
For instance, in clinical trials, there is very good agreement worldwide on what the different metrics we use are- e.g. in cancer research, we usually want to know the 5-year survival rate (meaning the percentage of patients still alive 5 years after diagnosis). So anyone with the right training should be able to pick up a clinical trial report and understand what the results are and what the report is saying.
Force exerted by the bullet = mass * acceleration = 0.013 * 850 = 11.05 Newtons.
the rifle exerts same force in opposite direction so we have
11.05 = 3.5 * a
acceleration = 11.05 / 3.5 = 3.16 m /s^-2
The static frictional force is greater than the kinetic frictional force, so the static frictional force is greater than 1200 N.
Since the electron dropped from an energy level i to the ground state by emitting a single photon, this photon has an energy of 1.41 × 10⁻¹⁸ Joules.
<h3>How to calculate the photon energy?</h3>
In order to determine the photon energy of an electron, you should apply Planck-Einstein's equation.
Mathematically, the Planck-Einstein equation can be calculated by using this formula:
E = hf
<u>Where:</u>
In this scenario, this photon has an energy of 1.41 × 10⁻¹⁸ Joules because the electron dropped from an energy level i to the ground state by emitting a single photon.
Read more on photons here: brainly.com/question/9655595
#SPJ1