Answer:
894 electrons
Explanation:
The electrostatic force between the two charges is given by:

where we have
is the force
k is the Coulomb's constant
q1 = q2 =q is the magnitude of the charge on each sphere
r = 20.0 cm = 0.20 m is the distance between the two spheres
Substituting and solving for q, we find the charge on each sphere:

And since each electron has a charge of

the net charge on each sphere will be given by

where N is the number of excess electrons; solving for N,

The mass tells you the amount of matter or substance that makes up an object.
The weight tells you the measure of the matter.
The volume tells you the amount of space/size taken up
To have a weight of 2.21N., the ball's mass is (2.21/9.8) = .226kg.
<span>a) d = 1/2 (vt), = 1/2 (18 x .17), = 1.53m. </span>
<span>b) Acceleration of the ball = (v/t), = 18/.17, = 105.88m/sec^2. </span>
<span>f = (ma), = .226 x 105.88, = 23.92N. </span>
If the density of water does not vary and the vents range in depth from about 1500 m to 3200 m below the surface, then the gauge pressure at a 2452-m deep vent is 224.268 atm.
Calculation:
Step-1:
It is given that the vents range in depth from about 1500 m to 3200 m below the surface. If we are assuming that the density of water does not vary. Then it is required to calculate the gauge pressure at a 2452-m deep vent.
The gauge pressure at a particular depth of ocean water is calculated as:

Here
is the density of water, P is the required pressure, h is the depth of water, and g is the gravitational acceleration.
Step-2:
Now we are substituting the values to calculate the pressure at the depth of 2452-m.

Learn more about gauge pressure here,
brainly.com/question/14012416
#SPJ4