idksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu jidksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu jidksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu jidksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu j
Answer:

Explanation:
From the question we are told that:
Number of turns 

Conductor each with side length 
Current 
Magnetic field
Generally the equation for the total magnetic moment M is mathematically given by



Answer:
a) Since the height of the baseball at 99 m was 8.93 m and the fence at that distance is 3m tall, the hit was a home run.
b) The total distance traveled by the baseball was 108.7 m.
Explanation:
a) To know if the hit was a home run we need to calculate the height of the ball at 99 m:

Where:
: is the final height =?
: is the initial height = 1 m
: is the initial vertical velocity = v₀sin(45)
v₀: is the initial velocity = 32.5 m/s
g: is the gravity = 9.81 m/s²
t: is the time
First, we need to find the time by using the following equation:

Now, the height is:
Since the height of the baseball at 99 m was 8.93 m and the fence at that distance is 3m tall, the hit was a home run.
b) To find the distance traveled by the baseball first we need to find the time of flight:



By solving the above quadratic equation we have:
t = 4.73 s
Finally, with that time we can find the distance traveled by the baseball:

Hence, the total distance traveled by the baseball was 108.7 m.
I hope it helps you!
Kinetic energy, KE, is modeled by the formula

, where m is the mass in kg and v is the velocity in m/s.
In this scenario, mass and one-half are constant but the velocity changes.
You can see that by squaring twice the velocity, that is equal to four times the original KE. Therefore, the answer is 4k.