Answer:
a) a = 2.383 m / s², b) T₂ = 120,617 N
, c) T₃ = 72,957 N
Explanation:
This is an exercise of Newton's second law let's fix a horizontal frame of reference
in this case the mass of the sleds is 30, 20 10 kg from the last to the first, in the first the horizontal force is applied.
a) request the acceleration of the system
we can take the sledges together and write Newton's second law
T = (m₁ + m₂ + m₃) a
a = T / (m₁ + m₂ + m₃)
a = 143 / (10 +20 +30)
a = 2.383 m / s²
b) the tension of the cables we think through cable A between the sledges of 1 and 20 kg
on the sled of m₁ = 10 kg
T - T₂ = m₁ a
in this case T₂ is the cable tension
T₂ = T - m₁ a
T₂ = 143 - 10 2,383
T₂ = 120,617 N
c) The cable tension between the masses of 20 and 30 kg
T₂ - T₃ = m₂ a
T₃ = T₂ -m₂ a
T₃ = 120,617 - 20 2,383
T₃ = 72,957 N
50kg driving at 30kph because it’s the heaviest yet fastest!
An independent variable is a variable that does not depend on anything. It is manipulated to determine the value of a dependent variable<span>. The dependent variable is what is being measured in an experiment or evaluated in a mathematical equation and the independent variables are the inputs to that measurement. Example: Time would always be an independent variable because nothing affects time, however, time can affect everything. </span>
The speed at the sound barrier is 343 m/s
17
What would the scale read? zero
18 In free fall you are being pulled by a gravity. "Truly" weightless presumably happens in deep space where there is nothing to pull you.
19 coasters accelerate down to simulate weight loss/zeroised. As do NASA planes,
Roller coasters are for fun seekers. NASA is for science