<h3><u>Answer;</u></h3>
A gas in a liquid
<h3><u>Explanation;</u></h3>
- Pressure affects the solubility of gases. According to Henry's law, the solubility of a gas in a liquid is proportional to the partial pressure of the gas above the liquid at a given temperature,
- Therefore; For the solubility of gases in liquids, as pressure increases, solubility increases. Hence pressure will have a effect on a solution with a gas in liquid.
Answer:
I'm sorry but I'm not doing the whole test
Explanation:
1. The reaction for this would be:
Sn + 4 HNO₃ → SnO₂ + 4 NO₂ + 2 H₂O
The first observation would be bubbling of the solution and brown acrid smoke is produced due to the presence of NO₂ gas. Another observation would be the presence of a white solid which is SnO₂.
2. Heating was required to get rid of the H₂O. When all moisture is gone, you weigh the sample. Afterwhich, you further heat it to get ride of the oxygen. By doing this, you would know the individual mass of each element. Then, you can solve for the empirical formula of the oxide of tin.
Answer:
neq N2O4 = 0.9795 mol.....P = 0.5 atm; T = 25°C
Explanation:
ni change eq.
N2O4 1 1 - x 0.8154.....P = 1 atm; T = 25°C
NO2 0 0 + x x
∴ x = neq = Peq.V / R.T.....ideal gas mix
if P = 0.5 atm, T = 25°C; assuming: V = 1 L
⇒ x = neq = ((0.5 atm)(1 L))/((0.082 atm.L/K.mol)(298 K))
⇒ x = neq = 0.0205 mol
⇒ neq N2O4 = 1 - x = 1 - 0.0205 = 0.9795 mol
Answer:
The correct answer is -
1. a) The bubbles will shrink, some may vanish.
2. a) Can A will make a louder and stronger fizz than can B.
Explanation:
In the first question, it is given that the bottle is not opened and therefore, squeezing the bottle filled with a carbonated drink will increase the pressure on the carbonated liquid which forces the bubbles to dissolve or displace or vanish as it moves to empty space.
Thus, the correct answer would be - The bubbles will shrink, some may vanish
In the second question, there are two different conditions for two different unopened cans of carbonated water that are different temperatures one at the garage with higher temperature and one in the fridge at low temperature. As it is known that higher the temperature less will be solubility of gas in liquid so gas in can A will be less soluble which means it has more gas and it will make louder and stronger fizz than B which was stored at low temperature.
thus, the correct answer would be - Can A will make a louder and stronger fizz than can B.