1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna71 [15]
3 years ago
12

Two marbles are launched at t = 0 in the experiment illustrated in the figure below. Marble 1 is launched horizontally with a sp

eed of 4.20 m/s from a height h = 0.950 m. Marble 2 is launched from ground level with a speed of 5.94 m/s at an angle above the horizontal. (a) Where would the marbles collide in the absence of gravity? Give the x and y coordinates of the collision point. (b) Where do the marbles collide given that gravity produces a downward acceleration of g = 9.81 m/s2? Give the x and y coordinates.
Physics
2 answers:
Alex787 [66]3 years ago
7 0

Answer:

Two marbles are launched at t = 0 in the experiment illustrated in the figure below. Marble 1 is launched horizontally with a speed of 4.20 m/s from a height h = 0.950 m. Marble 2 is launched from ground level with a speed of 5.94 m/s at an angle above the horizontal. (a) Where would the marbles collide in the absence of gravity? Give the x and y coordinates of the collision point. (b) Where do the marbles collide given that gravity produces a downward acceleration of g = 9.81 m/s2? Give the x and y coordinates.

Explanation:

i want the answer i don't know

ipn [44]3 years ago
6 0

Answer:

Explanation:want answers

You might be interested in
All chemical reactions occur at the same rate true or false​
SSSSS [86.1K]

Answer:

false

Explanation:

7 0
3 years ago
Read 2 more answers
A volleyball player bumps a ball across a net with the velocity and angle shown below. What is the maximum height of the ball?
Marrrta [24]

Answer:

D. 12.4 m

Explanation:

Given that,

The initial velocity of the ball, u = 18 m/s

The angle at which the ball is projected, θ = 60°

The maximum height of the ball is given by the formula

                             h = u² sin²θ/2g  m

Where,

                           g - acceleration due to gravity. (9.8 m/s)

Substituting the values in the above equation

                            h = 18² · sin²60 / 2 x 9.8

                               = 18² x 0.75 / 2 x 9.8

                               = 12.4 m

Hence, the maximum height of the ball attained, h = 12.4 m

6 0
3 years ago
What shape is the unit cell of ruby?
sleet_krkn [62]
Ruby, a variety of the mineral corundum is in the trigonal crystal system, with hexagonal scalenohedra crystals
7 0
3 years ago
A car travels around a level, circular track that is 750m across. What coefficient of friction is required to ensure the car can
Crank

The coefficient of friction must be 0.196

Explanation:

For a car moving on a circular track, the frictional force provides the centripetal force needed to keep the car in circular motion. Therefore, we can write:

\mu mg = m\frac{v^2}{r}

where the term on the left is the frictional force acting between the tires of the car and the road, while the term on the right is the centripetal force. The various terms are:

\mu is the coefficient of friction between the tires and the road

m is the mass of the car

g=9.8 m/s^2 is the acceleration of gravity

v is the speed of the car

r is the radius of the curve

In this problem,

r = 750 m is the radius

v=85 mph \cdot \frac{1609}{3600}=38.0 m/s is the speed

And solving for \mu, we find the coefficient of friction required to keep the car in circular motion:

\mu = \frac{v^2}{rg}=\frac{38.0^2}{(750)(9.8)}=0.196

Learn more about circular motion:

brainly.com/question/2562955  

brainly.com/question/6372960  

#LearnwithBrainly

8 0
3 years ago
What is the maximum value the string tension can have before the can slips? The coefficient of static friction between the can a
Naya [18.7K]

Answer:

T= 38.38 N

Explanation:

Here

mass of can = m = 3 kg

g= 9.8 m/sec2

angle θ = 40°

From figure we see the vertical and horizontal component of tension force T

If the can is to slip - then horizontal component of tension force should become equal to force of friction.

First we find force of friction

Fs= μ R

where

μ = 0.76

R = weight of can = mg = 3 × 9.8 = 29.4 N

Now horizontal component of tension

Tx= T cos 40 = T× 0.7660  N

==>T× 0.7660 = 29.4

==> T= 38.38 N

8 0
3 years ago
Other questions:
  • A circuit has a resistance of 10ohmsband a current of 42 amps.caculate the voltage
    15·1 answer
  • U"LL GET 24PTS IF U HELP ME
    5·1 answer
  • Consider the following:
    15·1 answer
  • PLEASE HELP!!!!! which statements correctly conpare the masses of protons,neutrons,and electrons​
    13·1 answer
  • Why does a spherometer have three legs​
    11·1 answer
  • Substances found in the food that the body needs​
    7·1 answer
  • The brake shoes of your car are made of a material that can tolerate very high temperatures without being damaged. Why is this s
    11·1 answer
  • I know the acceleration due to gravity (ie 9.8 m/s2) will have a negative sign when falling down, a positive one when going up.
    7·1 answer
  • 4. A car with a mass of 1000 kg is travelling at an acceleration of 25 m/s2 and hits a wall. What is
    5·1 answer
  • The space station is 4.41 x 10^5 kg and orbits the earth 6.78 x 10^6 m from the center of earth. The mass of earth is 5.97 x 10^
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!