Answer:
R = 0.1 ohms
Explanation:
It is given that,
Voltage of the battery, V = 12.5 V
Current flowing in the car's starter, I = 125 A
We need to find the effective resistance of a car's starter. It can be calculated using Ohm's law. Let R is the resistance.

So, the resistance of the car's starter is 0.1 ohms.
Hi there!
We must begin by converting km/h to m/s using dimensional analysis:

Now, we can use the kinematic equation below to find the required acceleration:
vf² = vi² + 2ad
We can assume the object starts from rest, so:
vf² = 2ad
(17.22)²/(2 · 75) = a
a = 1.978 m/s²
Now, we can begin looking at forces.
For an object moving down a ramp experiencing friction and an applied force, we have the forces:
Fκ = μMgcosθ = Force due to kinetic friction
Mgsinθ = Force due to gravity
A = Applied Force
We can write out the summation. Let down the incline be positive.
ΣF = A + Mgsinθ - μMgcosθ
Or:
ma = A + Mgsinθ - μMgcosθ
We can plug in the given values:
22(1.978) = A + 22(9.8sin(5)) - 0.10(22 · 9.8cos(5))
A = 46.203 N
Hurricanes form from interactions between the atmosphere and the oceans. Hope it helps.
The answer is the national border
The snail will go <span>0.18193752 miles </span>