From Grahams Law the rates of effusion of two gases are inversely proportional to the square roots of their molar masses at the same temperature and pressure.
Therefore; R1/R2 = √mm2/√mm1
The molecular mass of Carbon dioxide is 44 g
Hence; 1.8 = √(44/x
3.24 = 44/x
x = 44/3.24
= 13.58
Therefore, the molar mass of the other gas is 13.58 g/mol
the answer is <span>Astatine is one period further than tellurium, meaning it has an extra shell. Therefore, the At atom will be bigger than the Te atom. </span>
Answer:
The answer to this can be arrived at by clculating the mole fraction of atoms higher than the activation energy of 10.0 kJ by pluging in the values given into the Arrhenius equation. The answer to this is 20.22 moles of Argon have energy equal to or greater than 10.0 kJ
Explanation:
From Arrhenius equation showing the temperature dependence of reaction rates.
where
k = rate constant
A = Frequency or pre-exponential factor
Ea = energy of activation
R = The universal gas constant
T = Kelvin absolute temperature
we have

Where
f = fraction of collision with energy higher than the activation energy
Ea = activation energy = 10.0kJ = 10000J
R = universal gas constant = 8.31 J/mol.K
T = Absolute temperature in Kelvin = 400K
In the Arrhenius equation k = Ae^(-Ea/RT), the factor A is the frequency factor and the component e^(-Ea/RT) is the portion of possible collisions with high enough energy for a reaction to occur at the a specified temperature
Plugging in the values into the equation relating f to activation energy we get
or f =
= 20.22 moles of argon have an energy of 10.0 kJ or greater
Answer:
1 pH more acidic
Explanation:
0 is considered to be most acidic.
14 is the most alkaline
7 is neutral.
So from 7 pH, it becomes 1 pH acidic, making it 6 pH.