A word equation is a chemical reaction described using words.
A common example is the act of photosynthesis - the process plants use to make glucose (sugar) to use as 'food'.
Plants convert water and carbon dioxide into oxygen and glucose.
A word equation to express this is:
Water + Carbon Dioxide → Glucose + Oxygen
The other type of equation is a symbol equation - this uses the symbols of the elements instead of the common names:
H₂O + CO₂ → C₆H₁₂O₆ + O₂
There is also a balanced version:
6H₂O + 6CO₂ → C₆H₁₂O₆ + 6O₂
<em>If you want information on the balanced symbol equations, feel free to PM me.</em>
Answer:
B)−6,942 J
/mol
Explanation:
At constant temperature and pressure, you cand define the change in Gibbs free energy, ΔG, as:
ΔG = ΔH - TΔS
Where ΔH is enthalpy, T absolute temperature and ΔS change in entropy.
Replacing (25°C = 273 + 25 = 298K; 25.45kJ/mol = 25450J/mol):
ΔG = ΔH - TΔS
ΔG = 25450J/mol - 298K×108.7J/molK
ΔG = -6942.6J/mol
Right solution is:
<h3>B)−6,942 J
/mol</h3>
Explanation:
Metals are the species which readily lose electrons in order to attain stability. This electron lost by the atom is actually present in its outermost shell which is also known as valence shell.
Ionization energy is defined as the energy required to remove the most loosely bound electron from a neutral gaseous atom.
When we move across a period from left to right then there occurs a decrease in atomic size of the atoms. Therefore, ionization energy increases along a period.
But when we move down a group then there occurs an increase in atomic size of the atoms due to addition of number of electrons in the atoms. Hence, ionization energy decreases along a group.
Thus, we can conclude that metals have low ionization energies and readily share their valence or outer electrons with each other to form an electron sea. These electrons are delocalized or shared among all the atoms that are bonded together and can therefore move freely throughout the metal structure.