Explanation:
The given data is as follows.
F = 
q = 
v = 385 m/s
= 0.876
Now, we will calculate the magnitude of magnetic field as follows.
B = 
= 
=
T
= 10.65 T
Thus, we can conclude that magnitude of the magnetic field is 10.65 T.
Answer:
B= 55.6×10^(-7) Tesla
Explanation:
B= μoI/(2πr)
B: magnetic field strength
μo: permeability of free space and is equal to 4π×10^(-7) T.m/A
r: distance from the wire
I : current in the wire
B= (4π×10^(-7)×125)/(2π×4.5)
B= 55.6×10^(-7) Tesla
I think it is c I'm only in 7th grade but I'm pretty sure that the answer is c
Answer:
See answer
Explanation:
The area of the circular loop is given by:

The magnetic flux is given by:

is parallel to
and
is constant in magnitude and direction therefore:

Part A)
initially the flux is 
after the interval
the flux is

now, the EMF is defined as:
,
if we consider
very small then we can re-write it as:

then:
![\epsilon =- \frac{-0.12}{0.0024} = 50 [V]](https://tex.z-dn.net/?f=%5Cepsilon%20%3D-%20%5Cfrac%7B-0.12%7D%7B0.0024%7D%20%3D%2050%20%5BV%5D)
Part B)
When looked down from above, the current flows counter clockwise, according to the right hand rule, if you place your thumb upwards (the direction of the magnetic field) and close your fingers, then the current will flow in the direction of your fingers.
Because it doesn't use energy it uses mechanical and kinetic