<h2>2) Copernicus rediscovered Aristarchus’s heliocentric model.</h2>
Before Copernican Revolution, people did believe in the ptolemain model that establishes the description of the Universe with the earth at the center having sun, moon, starts and planets all orbited earth. On the other hand, the heliocentric model establishes the sun at the center of the solar system and this starts with the publication of Nicolas Copernicus named <em>De revolutionibus orbium coelestium.</em>
<h2>5) Newton’s theories of gravity increased understanding of the movement of planets.</h2>
The revolution ended with Isaac Newton's work over a century later. As you well know, Newton was both a physicist and mathematician, better known for his prodigal work called <em>Philosophiæ Naturalis Principia Mathematica. </em>In this revolution, he is known for his laws of motion and universal gravitation increasing understanding of the movement of planets.
All vascular plants have parenchyma, collenchym<span>Vascular tissue transports food, water, hormones and minerals within the plant. Vascular tissue includes </span>xylem<span>, </span>phloem<span>, parenchyma, and cambium cells.</span>a, and sclerenchyma cells. Hoped it help!
Answer:
21.67 rad/s²
208.36538 N
Explanation:
= Final angular velocity = 
= Initial angular velocity = 78 rad/s
= Angular acceleration
= Angle of rotation
t = Time taken
r = Radius = 0.13
I = Moment of inertia = 1.25 kgm²
From equation of rotational motion

The magnitude of the angular deceleration of the cylinder is 21.67 rad/s²
Torque is given by

Frictional force is given by

The magnitude of the force of friction applied by the brake shoe is 208.36538 N
By definition we have the momentum is:
P = m * v
Where,
m = mass
v = speed
Before the impact:
P1 = (0.048) * (26) = 1.248 kg * m / s
After the impact:
P2 = (0.048) * (- 17) = -0.816 Kg * m / s.
Then we have that deltaP is:
deltaP = P2-P1
deltaP = (- 0.816) - (1,248)
deltaP = -2,064 kg * m / s.
Then, by definition:
deltaP = F * delta t
Clearing F:
F = (deltaP) / (delta t)
Substituting the values
F = (- 2.064) / (1/800) = - 1651.2N
answer:
the magnitude of the average force exerted on the superball by the sidewalk is 1651.2N
Answer:
Explanation:
The solved solution is on the attach document