1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tju [1.3M]
3 years ago
8

80

Physics
1 answer:
Dahasolnce [82]3 years ago
7 0

Answer:

1 million hahahahahahahahhahah

You might be interested in
6) Why do electromagnetic waves not require a medium for travel?
sergij07 [2.7K]
Electromagnetic waves are a type of
transverse wave. This wave does not
require media for travel. As the name
implies a wave, these waves indicate
electrical and magnetic properties. No
cost whatsoever happened to the wave. Electromagnetic waves work with the
laws of reflection and refraction. They
travel the straight line in a vacuum at a
speed of 3 x 108 ms-1. The intensity of
electromagnetic waves depends on the
strength of the electric field.
8 0
2 years ago
the electrostatic force between two objects is 40N. if the charge of one object is cut in half, and the distance is doubled, wha
n200080 [17]

Answer:

F1 = K Q1 Q2 / R1^2

F2 = K Q1 / 2 * Q2 / (2 R1)^2

F2 / F1 = 1/2 / 4 = 1/8

The new force is 5N   (1/2 due to charge and 1/4 due to distance)

8 0
3 years ago
A gamma ray and a microwave traveling in a vacuum have the same?
kaheart [24]
They have the same speed 
7 0
3 years ago
Read 2 more answers
Why do<br> stars seem to move at night?<br> ght
Tema [17]
It looks that way cause the earth is rotation on its axis
4 0
3 years ago
Read 2 more answers
A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When
11111nata11111 [884]

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

7 0
3 years ago
Other questions:
  • Which is true about the pressure of a fluid at a specific depth? A. It depends on the surface area of the fluid. B. It is exerte
    11·1 answer
  • The spin cycles of a washing machine have two angular speeds, 439 rev/min and 602 rev/min . The internal diameter of the drum is
    11·1 answer
  • A sample of argon gas has a volume of 6 liters at a temperature of 7*C. What volume does the gas occupy at 147*C?
    10·1 answer
  • The energy (such as light and heat) released by the Sun is produced by nuclear reactions in the core of the Sun, which convert h
    10·1 answer
  • Which one of the following statements concerning kinetic energy is true? a The kinetic energy of an object always has a positive
    10·1 answer
  • Carl is eating lunch at his favorite cafe when his friend Isaac calls and says he wants to meet him. Isaac is calling from a cit
    9·1 answer
  • Which will increase the energy of motion of water molecules?
    12·1 answer
  • A proton accelerates from rest in a uniform electric field of 630 N/C. At one later moment, its speed is 1.50 Mm/s (nonrelativis
    10·1 answer
  • PLEASE HELP ME I AM TIMED!
    7·1 answer
  • The door handles are kept near the door handles​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!