Answer:
The hiker followed a road heading north for 2 miles in 30 minutes.
Explanation:
In order to describe the motion of an object, distance covered and time taken must be required. The total path covered by an object is called the distance travelled.
The hiker followed a road heading north for 2 miles in 30 minutes. This describes the motion of hiker. The motion shows how fast the hiker is moving.
Distance, d = 2 miles = 3218.6 m
times, t = 30 minutes = 1800 seconds
So, we can say that the hiker is moving with a speed of 1.78 m/s in north direction.
Hence, this is the required solution.
The force exerted by the laser beam on a completely absorbing target is
.
The given parameters;
- <em>power of the laser light, P = 1050 W</em>
- <em>wavelength of the emitted light, λ = 10 μm </em>
The speed of the emitted laser light is given as;
v = 3 x 10⁸ m/s
The force exerted by the laser beam on a completely absorbing target is calculated as follows;
P = Fv

Thus, the force exerted by the laser beam on a completely absorbing target is
.
Learn more here:brainly.com/question/17328266
The answer is b !!!! Hope it helps
Answer:
2.30 × 10⁻⁸ N if the two electrons are in a vacuum.
Explanation:
The Coulomb's Law gives the size of the electrostatic force
between two charged objects:
,
where
is coulomb's constant.
in vacuum.
and
are the signed charge of the objects.
is the distance between the two objects.
For the two electrons:
.
.
.
The sign of
is negative. In other words, the two electrons repel each other since the signs of their charges are the same.