1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Volgvan
3 years ago
5

A 3.9 g dart is fired into a block of wood with a mass of 24.6 g. The wood block is initially at rest on a 1.5 m tall post. Afte

r the collision, the wood block and dart land 3.5 m from the base of the post. Find the initial speed of the dart.
Physics
1 answer:
Galina-37 [17]3 years ago
4 0

Answer:

46.48m/s

Explanation:

The problem is a combination of the principle of conservation of linear momentum and projectile motion.

The principle of conservation of linear momentum states that in a closed system, the total momentum of colliding bodies before impact is equal to the total momentum after impact. The masses stated in the problem experienced an inelastic collision. In an inelastic collision, the bodies involved stick together after the collision and move with a common velocity.

For two bodies of masses m_1 and m_2 moving with velocities u_1 and u_2 before impact, if they experience inelastic collision, the conservation of their momenta is as stated in equation (1);

m_1u_1+m_2u_2=(m_1+m_2)v..................(1)

were v is their common velocity after impact. If the second mass m_2 was at rest before the impact, then its initial velocity u_2=0m/s. therefore m_2u_2=0. Equation (1) then becomes;

m_1u_1=(m_1+m_2)v..............(2)

In the problem stated, the second mass taken as the mass of the wooden block was at rest before the impact and the collision was inelastic since both the wood and the dart stuck together and moved with a common velocity after the impact. Therefore we can use equation (2) for the problem.

Given;

m_1=3.9g=0.0039kg\\u_1=?\\m_2=24.6g=0.0246kg\\v=?

Substituting these values into (2), we get the following;

0.0039*u_1=(0.0039+0.024)v\\0.0039u_1=0.0285v.........(3)

Their common v velocity after impact now makes both the wooden block and the dart (as a single body) to fall vertically through a height h of 1.5m over a range R of 3.5m as stated by the problem; hence by the principle of projectile motion for a body projected horizontally, the following relationship holds;

R= vt............(4)

were t is the time taken to fall through the height h. To obtain t we use the second equation of free fall under gravity;

h=\frac{1}{2}gt^2...........(5)

were g is acceleration due to gravity taken as 9.8m/s^2. Therefore;

1.5=\frac{1}{2}*9.8*t^2\\1.5=4.9t^2\\t^2=\frac{1.5}{4.9}=0.306\\t=\sqrt{0.306} =0.55s

We then substitute R and t into equation (4) to obtain v.

3.5=v*0.55\\v=\frac{3.5}{0.55}\\v=6.36m/s

We now further substitute this value of v into (3) to obtain u_1;

u_1=\frac{0.0285v}{0.0039}\\\\u_1=\frac{0.0285*6.36}{0.0039}\\\\u_1=\frac{0.18126}{0.0039}\\\\u_1=46.48m/s

You might be interested in
Which of the following supplies the heat for the hot reservoir in a car's engine?
nata0808 [166]
Out of the choices given, igniting the gas-air mixture supplies the heat for the hot reservoir in a car's engine. The correct answer is C. 
8 0
3 years ago
Read 2 more answers
A ball is kicked from a height of 20 meters above the ground. If the initial velocity is 10 m/s, how long is the ball in flight
nasty-shy [4]
S=20 m
v=10 m/s
t=s/v
= 20/10
= 2 s.
8 0
3 years ago
A 65-kg woman in an elevator is accelerating upward at a rate of 0.6 m/s2. The gravitational force is ___ N?
Nastasia [14]

Answer:

The gravitational force is 130.

Explanation:

During this problem you have to multiply the 65 and the 0.6.

5 0
3 years ago
3. A sprinter leaves the starting blocks with an acceleration of 4.5 m/s2. What is the
UkoKoshka [18]

Hi there! :)

\large\boxed{v_{f} = 18 m/s}

Use the following kinematic equation to solve for the final velocity:

v_{f} = v_{i} + at

In this instance, the runner started from rest, so the initial velocity is 0 m/s. We can rewrite the equation as:

v_{f} = at

Plug in the given acceleration and time:

v_{f} = 4.5 * 4 = 18 m/s

5 0
3 years ago
Why does a vibrating simple pendulum not to produce any sound
Gelneren [198K]
It does produce 'sound' ... a compression wave traveling through the air. But your ears don't hear a sound that's vibrating less than 20 or 30 times every second. If you could swing your pendulum that fast, you could hear the sound of its vibrations pushing the air around.
7 0
3 years ago
Other questions:
  • A girl and a boy are riding on a merry-go-round that is turning at a constant rate. The girl is near the outer edge, and the boy
    12·1 answer
  • Form of communication that reaches large audiences without personal contact.
    15·2 answers
  • What is the difference between the states of phase equilibrium and metastability?
    12·1 answer
  • Using arrangement (a), how many rb atoms could be placed on a square surface that is 9.5 cm on a side? the diameter of a rubidiu
    14·1 answer
  • In the diagram, what is happening to the temperature at Point B? Question 6 options: A. The temperature is rising as the molecul
    7·2 answers
  • What is the symbol F g mean
    12·2 answers
  • What is the female sex cells of a plant called?<br> Please help! Tysm!
    9·1 answer
  • How does the magnitude of the normal force exerted by the ramp in the figure compare to the weight of the static block? The norm
    11·1 answer
  • ~~~~NEED HELP ASAP~~~~
    10·2 answers
  • You are at a rest stop 250 miles north of New York City. You then travel north at a constant velocity of 65 miles per hour for 2
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!