Answer:
D. Newton's first law
Explanation:
Newton's first law of inertia says that an object will remain how it is, unless affected by an outside force. In this case, the plates want to remain stationary(not moving). Therefore, if you pull the table cloth fast enough, the force of friction produced will be small enough so that the Inertia of the plates will overcome the force of friction.
Answer:
a = 0.45 m/s²
Explanation:
The given question is ''Calculate the acceleration that produces a force of 40 N on a body with 88 kg of mass".
Given that,
Force, F = 40 N
Mass of the body, m = 88 kg
The net force acting on the body is given by :
F = ma
Where
a is the acceleration of the body

So, the required acceleration is 0.45 m/s².
Answer:
17.565 kgm/s
Explanation:
Momentum = mass × velocity
I = mv..................... Equation 1
But we can calculate the value of v using the equation of motion under gravity.
v² = u²+2gs............. Equation 2
Where u = initial velocity, s = maximum heigth, g = acceleration due to gravity.
Given: u = 0 m/s (at the maximum heigth), s = 7.0 m.
Constant: g = 9.8 m/s²
Substitute these values into equation 2
v² = 0²+ 2×7×9.8
v² = 137.2
v = √137.2
v = 11.71 m/s.
Also given: m = 1.50 kg
substitute these values into equation 1
Therefore,
I = 1.5×11.71
I = 17.565 kgm/s
Answer:comparing the total displacement and tota distance covered by Ben Jerry.
Explanation:
Total distance travelled by both is;
m+n=z
Total displacement of both is;
x+y=z
Therefore;
comparing equation 1 and 2;
x+y=m+n
Answer:
4 times greater
Explanation:
<u>Step 1:</u> Calculate light-collecting area of a 20-meter telescope (A₁) by using area of a circle.
Area of circle = π*r² =
Where d is the diameter of the circle = 20-m


A₁ = 314.2 m²
<u>Step 2:</u> Calculate light-collecting area of a 10-meter Keck telescope (A₂)

Where d is the diameter of the circle = 10-m

A₂ = 78.55 m²
<u>Step 3</u>: divide A₁ by A₂

= 4
Therefor, the 20-meter telescope light-collecting area would be 4 times greater than that of the 10-meter Keck telescope.