Let's do this by Briot-Ruffini
First: Find the monomial root
x - 2 = 0
x = 2
Second: Allign this root with all the other coeficients from equation
Equation = -3x³ - 2x² - x - 2
Coeficients = -3, -2, -1, -2
2 | -3 -2 -1 -2
Copy the first coeficient
2 | -3 -2 -1 -2
-3
Multiply him by the root and sum with the next coeficient
2.(-3) = -6
-6 + (-2) = -8
2 | -3 -2 -1 -2
-3 -8
Do the same
2.(-8) = -16
-16 + (-1) = -17
2 | -3 -2 -1 -2
-3 -8 -17
The same,
2.(-17) = -34
-34 + (-2) = -36
2 | -3 -2 -1 -2
-3 -8 -17 -36
Now you just need to put the "x" after all these numbers with one exponent less, see
2 | -3x³ - 2x² - 1x - 2
-3x² - 8x - 17 -36
You may be asking what exponent -36 should be, and I say:
None or the monomial. He's like the rest of this division, so you can say:
(-3x³ - 2x² - x - 2)/(x - 2) = -3x² - 8x - 17 with rest -36 or you can say:
(-3x³ - 2x² - x - 2)/(x - 2) = -3x² - 8x - 17 - 36/(x - 2)
Just divide the rest by the monomial.
Answer:
Step-by-step explanation:
y - 2 = -4(x - 1)
y - 2 = -4x + 4
y = -4x + 6
Answer:
We need to find the value of b to make 8b - 27 be equal to 5, so:
8b - 27 = 5
We solve the equation:
8b = 5 + 27
8b = 32
We divide both sides by 8:
b = 32/8 = 4
So now, we know that b=4, and we can verify:
8*4 - 27 = 5
32 - 27 = 5 TRUE
Answer:
Choices 1 and 4 are correct.
Step-by-step explanation:
We first need to find what the slope of the line is. That way, we can find out which possible answers are perpendicular to it:

Since we now have the slope, we need the negative reciprocal of it. Remember: if x is the slope, it's negative reciprocal will be
. Therefore, if the line's slope is 3, then we need to find answers with a slope of
.
The first answer is correct, as you have marked. The second answer, while written a little weirdly, does show the slope as 3, which we know as wrong. The third choice is not correct, however. This equation is written in point-slope form, where
. The only variable we have to worry about is m, which, in the third choice, is 3. The fourth answer is correct, which sounds weird at first. Let's put that equation into slope-intercept form:

Equations like these can be real sneaky, so it's important not to jump to conclusions with them.