Answer:
when the reflecting surface is plain and without even small hurdles that are not the visible by our naked eyes. Eg : plain mirror
Explanation:
Answer:
V = 0.39 m/s
Explanation:
Given that,
Mass of hockey puck, m = 0.2 kg
Mass of goalie = 40 kg
Speed of hockey puck, v = 80 m/s
We need to find the speed with which the goalie slide on the slide. Let V be the speed. Using the conservation of momentum as follows :

So, the required speed is 0.39 m/s.
Answer:
The answer is
<h2>84.9 kPa</h2>
Explanation:
Using Boyle's law to find the final pressure
That's

where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume
Since we are finding the final pressure

From the question
P1 = 115 kPa
V1 = 480 mL
V2 = 650 ml
So we have

We have the final answer as
<h3>84.9 kPa</h3>
Hope this helps you
Answer:
Explanation:
Newton’s Second Law of Motion says that acceleration (gaining speed) happens when a force acts on a mass (object). Riding your bicycle is a good example of this law of motion at work. Your bicycle is the mass.
1. In 2010-2011, the temperature decreased. In 2011-present, the temperature started increasing. From 390 to 405+
2. As the more carbon dioxide increases the temperature also increases with it.