1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jasenka [17]
3 years ago
9

A spring with spring constant 33N/m is attached to the ceiling, and a 4.8-cm-diameter, 1.5kg metal cylinder is attached to its l

ower end. The cylinder is held so that the spring is neither stretched nor compressed, then a tank of water is placed underneath with the surface of the water just touching the bottom of the cylinder. When released, the cylinder will oscillate a few times but, damped by the water, quickly reach an equilibrium position.When in equilibrium, what length of the cylinder is submerged?y=?m
Physics
1 answer:
mylen [45]3 years ago
6 0

Answer:

0.423m

Explanation:

Conversion to metric unit

d = 4.8 cm = 0.048m

Let water density be \who_w = 1000 kg/m^3

Let gravitational acceleration g = 9.8 m/s2

Let x (m) be the length that the spring is stretched in equilibrium, x is also the length of the cylinder that is submerged in water since originally at a non-stretching position, the cylinder barely touches the water surface.

Now that the system is in equilibrium, the spring force and buoyancy force must equal to the gravity force of the cylinder. We have the following force equation:

F_s + F_b = W

Where F_s = kxN is the spring force, F_b = W_w = m_wg = \rho_w V_s g is the buoyancy force, which equals to the weight W_w of the water displaced by the submerged portion of the cylinder, which is the product of water density \rho_w, submerged volume V_s and gravitational constant g. W = mg is the weight of the metal cylinder.

kx + \rho_w V_s g = mg

The submerged volume would be the product of cross-section area and the submerged length x

V_s = Ax = \pi(d/2)^2x

Plug that into our force equation and we have

kx + \rho_w \pi(d/2)^2x g = mg

x(k + \rho_w g \pi d^2/4) = mg

x = \frac{m}{(k/g) + (\rho_w\pi d^2/4)} = \frac{1.5}{(33/9.8) + (100*\pi * 0.048^2/4)} = 0.423 m

You might be interested in
The removal of an embedded gas from a solid object, as happens when formaldehyde in new carpets and furniture is released into t
dezoksy [38]

Answer:

"Offgassing"

Explanation:

According to my research on Kinesiology, I can say that based on the information provided within the question the process being described is known as "Offgassing". In other words this process is defined as when something gives off or releases a chemical, especially a harmful one, in the form of a gas into the air..

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.

8 0
3 years ago
why are we all cheating if we payed attention in what they trying to tell us we wouldn't have to cheat but we are not paying att
sweet-ann [11.9K]
I’ve always been failing since middle school. it’s bcs of quarantine that made me unmotivated. rn my grades are F’s D C and A . I should be paying attention but my phone just keeps me distracted lol.
7 0
3 years ago
Read 2 more answers
Water has a very high specific heat capacity when compared to most other common materials. In fact, ethyl alcohol has a specific
AveGali [126]

Answer:

Lead, Ethyl alcohol and water.

Explanation:

Specific heat capacity of a substance can be define as the quantity of heat that is absorbed by a substance needed to change the temperature of a unit mass of one kilogram of the substance by one kelvin

5 0
3 years ago
A student wearing a frictionless roller skates on a horizontal is pushed by a friend with a constant force of 55N. How far must
umka21 [38]

Answer:

6.58m

Explanation:

The kinetic energy = Workdone on the roller

Workdone = Force * distance

Given

KE = Workdone = 362J

Force = 55N

Required

Distance

Substitute into the formula;

Workdone = Force * distance

362 = 55d

d = 362/55

d = 6.58m

Hence the student must push at a distance of 6.58m

3 0
3 years ago
Suppose a car approaches a hill and has an initial speed of
kvv77 [185]

Answer:

a) 1.73*10^5 J

b) 3645 N

Explanation:

106 km/h = 106 * 1000/3600 = 29.4 m/s

If KE = PE, then

mgh = 1/2mv²

gh = 1/2v²

h = v²/2g

h = 29.4² / 2 * 9.81

h = 864.36 / 19.62

h = 44.06 m

Loss of energy = mgΔh

E = 780 * 9.81 * (44.06 - 21.5)

E = 7651.8 * 22.56

E = 172624.6 J

Thus, the amount if energy lost is 1.73*10^5 J

Work done = Force * distance

Force = work done / distance

Force = 172624.6 / (21.5/sin27°)

Force = 172624.6 / 47.36

Force = 3645 N

5 0
3 years ago
Other questions:
  • Direction of waves is parallel to distance of vibration in
    8·1 answer
  • Which two quantities are measured in the same units? (5 points)
    7·2 answers
  • Find the mean and median of the following data set: 98, 87, 92, 79, 65, 91, 80, 92, 85, 86.
    11·1 answer
  • How old are irregular galaxies?
    12·1 answer
  • What are three important details to know about an object's motion? Position, speed, density Speed, acceleration, position Positi
    11·2 answers
  • Putting yourself in another person's shoes in order to see matters from the other person's point of view is called
    15·1 answer
  • A car drives over a hilltop that has a radius of curvature 0.120 km at the top of the hill. At what speed would the car be trave
    8·1 answer
  • Calculate the weight of a 2kg chicken on earth. .. (use the formulas)​
    7·1 answer
  • What do scientists use to study the patterns and impacts of climate change over time?
    11·1 answer
  • How do you build a sticky piston door​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!