1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Amanda [17]
3 years ago
14

How much heat (in kJ) is required to warm 13.0 g of ice, initially at -12.0 ∘C, to steam at 109.0 ∘C?

Physics
1 answer:
Sunny_sXe [5.5K]3 years ago
7 0
<h2>Answer:</h2>

39.699 kJ

<h2>Explanation:</h2>

In this situation, there are a few transformations as follows;

(i) Heat required to warm the ice from -12°C to its melting point.

(ii) Heat required to melt the ice.

(iii) Heat required to boil the melted ice to boiling point (i.e to steam)

(iv) Heat required to vapourize the water

(v) Heat required to heat the steam from 100°C to 109.0°C

The sum of all the heat processes gives the heat required to warm the ice to steam;

<h3><em>Calculate each of these heat processes</em></h3>

<em>From (i);</em>

Let the heat required to warm the ice from -12.0°C to its melting point (0°C) be Q₁.

Q₁ = m x c x ΔT        -----------------------(i)

Where;

m = mass of ice = 13.0g

c = specific heat capacity of ice = 2.09 J/g°C

ΔT = final temperature - initial temperature = 0°C - (-12°C) = 12°C

Substitute these values into equation (i) as follows;

Q₁ = 13.0 x 2.09 x 12 = 326.04 J

<em>From (ii);</em>

Let the heat required to melt the ice be Q₂. This heat is called the heat of fusion and it is given by;

Q₂ = m x L        -----------------------(ii)

Where;

m = mass of ice = 13.0g

L = latent heat of fusion of ice = 333.6 J/g

Substitute these values into equation (ii) as follows;

Q₂ = 13.0 x 333.6

Q₂ = 4336.8 J

<em>From (iii);</em>

Let the heat required to boil the melted ice from 0°C to boiling point of 100°C be Q₃.

Q₃ =  m x c x ΔT        -----------------------(i)

Where;

m = mass of melted ice (water) which is still 13.0g

c = specific heat capacity of melted ice (water) = 4.2 J/g°C

ΔT = final temperature - initial temperature = 100°C - 0°C = 100°C

Substitute these values into equation (i) as follows;

Q₁ = 13.0 x 4.2 x 100 = 5460 J

<em>From (iv);</em>

Let the heat required to vaporize the water (melted ice) be Q₄. This heat is called the heat of vaporization and it is given by;

Q₄ = m x L        -----------------------(iv)

Where;

m = mass of ice = 13.0g

L = latent heat of vaporization of water = 2257 J/g

Substitute these values into equation (iv) as follows;

Q₄ = 13.0 x 2257

Q₄ = 29341 J

<em>From (v);</em>

Let the heat required to heat the steam from 100°C to 109°C be Q₅.

Q₅ =  m x c x ΔT        -----------------------(i)

Where;

m = mass of steam which is still 13.0g

c = specific heat capacity of steam = 2.01 J/g°C

ΔT = final temperature - initial temperature = 109.0°C - 100°C = 9°C

Substitute these values into equation (i) as follows;

Q₅ = 13.0 x 2.01 x 9 = 235.17J

<em>Finally:</em>

<em>Sum all the heat values together;</em>

Q = Q₁ + Q₂ + Q₃ + Q₄ + Q₅

Q = 326.04 + 4336.8 + 5460 + 29341 + 235.17

Q = 39699.01 J

Q = 39.699 kJ

Therefore, the amount of heat (in kJ) required is 39.699

You might be interested in
Study the scenario.
Otrada [13]

If no other forces act on the object, according to Newton’s first law, the spacecraft will continue moving at a constant velocity, assuming that a planet or something with large mass doesn’t cross its path. Forces are not required to continue the motion of an object on a frictionless plane at a constant rate.

7 0
3 years ago
Read 2 more answers
a 2.35 water bucket is swung in a full cirlce of radius 0.824 m just fast enough so that the water doesn't fall out the top mean
tiny-mole [99]

Answer:

2.84 m/s

Explanation:

At the top position of the circular trajectory, the normal reaction is zero:

N = 0

So it means that the only force that is providing the centripetal force is the gravitational force (the weight of the bucket). Therefore we have:

mg = m \frac{v^2}{r}

where

m is the mass of the water bucket

g = 9.8 m/s^2 is the acceleration of gravity

v is the speed of the bucket

r = 0.824 m is the radius of the circle

Solving for v,

v=\sqrt{gr}=\sqrt{(9.8 m/s^2)(0.824 m)}=2.84 m/s

4 0
3 years ago
Two in-phase loudspeakers that emit sound with the same frequency are placed along a wall and are separated by a distance of 5.0
e-lub [12.9K]

Answer:

f = 421.8 Hz

Explanation:

When she moved a distance of 1 m from mid point she observe first destructive interference due to two speakers

so we can say that path difference of sound due to two speakers will be equal to half of the wavelength

so path difference is given as

\Delta L = {3.5^2 + 12^2}^{0.5} - {1.5^2 + 12^2}^{0.5}

so it will be

\Delta L = 12.5 - 12.093

\Delta L = 0.4066

now we know that

\frac{\lambda}{2} = 0.4066

\lambda = 0.813

now frequency of sound is given as

f = \frac{v}{\lambda}

f = \frac{343}{0.813}

f = 421.8 Hz

4 0
3 years ago
You have a summer job at a company that developed systems to safely lower large loads down ramps. Your team is investigating a m
Fofino [41]

Answer:

Note that the emf induced is

emf = B d v cos (A)

---> v = emf / [B d cos (A)]

where

B = magnetic field

d = distance of two rails

v = constant speed

A = angle of rails with respect to the horizontal

Also, note that

I = emf/R

where R = resistance of the bar

Thus,

I = B d v cos (A) / R

Thus, the bar experiences a magnetic force of

F(B) = B I d = B^2 d^2 v cos (A) / R, horizontally, up the incline.

Thus, the component of this parallel to the incline is

F(B //) = F(B) cos(A) = B I d = B^2 d^2 v cos^2 (A) / R

As this is equal to the component of the weight parallel to the incline,

B^2 d^2 v cos^2 (A) / R = m g sin (A)

where m = the mass of the bar.

Solving for v,

v = [R m g sin (A) / B^2 d^2 cos^2 (A)]   [ANSWER, the constant speed, PART A]

******************************

v = [R m g sin (A) / B^2 d^2 cos^2 (A)]

Plugging in the units,

m/s = [ [ohm * kg * m/s^2] / [T^2 m^2] ]

Note that T = kg / (s * C), and ohm = J * s/C^2

Thus,

m/s = [ [J * s/C^2 * kg * m/s^2] / [(kg / (s * C))^2 m^2] ]

= [ [J * s/C^2 * kg * m/s^2] / [(kg^2 m^2) / (s^2 C^2)]

As J = kg*m^2/s^2, cancelling C^2,,

= [ [kg*m^2/s^2 * s * kg * m/s^2] / [(kg^2 m^2) / (s^2)]

Cancelling kg^2,

= [ [m^2/s^2 * s * m/s^2] / [(m^2) / (s^2)]

Cancelling m^2/s^2,

= [s * m/s^2]

Cancelling s,

=m/s   [DONE! WE SHOWED THE UNITS ARE CORRECT! ]

8 0
3 years ago
You want to create a device to warm food that is safe. Which type of electromagnetic wave would be most useful to investigate? A
Liono4ka [1.6K]
The best type of electromagnetic wave to use to warm food that is safe would be the infrared wave. The correct answer is B.
8 0
3 years ago
Read 2 more answers
Other questions:
  • What is the name for a quantity that has both magnitude and direction
    5·1 answer
  • What is the most important long-lasting internal heat source responsible for geological activity?
    11·1 answer
  • A printed circuit board (PCB) is supported by a chassis that is attached to a vibrating motor. The board is 1.6 mm thick, 200 mm
    9·1 answer
  • Article 5 of the Fundamental Orders of Connecticut is MOST LIKELY related to which idea?
    15·1 answer
  • Copernicus incorrectly assumed that the planets?
    14·1 answer
  • How does a virus make it into a cell and what happens to it as it tries to get to its target “The Nucleus”?
    8·1 answer
  • When waves of equal amplitude from two sources are out of phase when they interact it is called?
    12·1 answer
  • How would gravity cause planets to move if they did not have inertia?
    13·2 answers
  • Compare and Contrast the two main branches of physical science. How are they the same? How are they different?
    14·1 answer
  • The total length of the wire of potentiometer is 10m. A potential gradient of 0.0015 V/cm is obtained when a steady current is p
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!