Answer:
The correct answer is thermophiles.
Explanation:
Thermus aquaticus are heat resistant bacteria because these bacteria can survive under adverse environmental conditions like high temperature.
These bacteria belong to one of the most heat-loving groups of extremophiles that are thermophiles. Thermophiles are present in volcanic soil, geysers and around deep-sea vents where the temperature is extremely high.
Thermus aquaticus bacteria is used to manufacture an enzyme called Taq DNA polymerase, which is heat resistant and also an important factor in molecular biology.
It introduces a diverse array of bacteria, algae, and invertebrates to the closed marine environment and functions as a superior biological filter
Answer:
c. 20.0332 g to 20,0 g
Explanation:
A significant figure is each of the digits of a number that are used to express it to the required degree of accuracy, starting from the first non-zero digit, with the exception of the trailing zeros.
<em>Which of the following examples illustrates a number that is correctly rounded to three significant figures?
</em>
a. 109 526 g to 109 500 g. NO. The rounded number has 4 significant figures: 109 500.
b. 0.03954 g to 0.040 g. NO. The rounded number has 2 significant figures: 0.040.
c. 20.0332 g to 20.0 g. YES. The rounded number has 3 significant figures: 20.0.
d. 04.05438 g to 4.054 g. NO. The rounded number has 4 significant figures: 4.054.
e. 103.692 g to 103.7g. NO. The rounded number has 4 significant figures: 103.7.
Charcoal with a carbon-14 activity of 0.60 compared to new wood has less than 5,730 years.
<h3>What is a radioactive isotope?</h3>
A radioactive isotope is an element in nature that emit radioactivity in a given period of time (e.g., the half-life for C14 is equal to 5,730 years).
Radioactive dating is a technique to measure the age of an element by measuring its radioactive activity.
In conclusion, charcoal with a carbon-14 activity of 0.60 compared to new wood has less than 5,730 yr.
Learn more about radioactive dating here:
brainly.com/question/8831242
#SPJ1
Answer is: 5,75·10⁻¹.
Kf = 2,3·10⁶ 1/s.
K = 4,0·10⁸ 1/s.
Kr = ?
Kf - <span>forward rate constant.
K - </span><span>equilibrium constant.
Kr - </span><span>reverse rate constant.
</span>Since both Kf and Kr are constants at a given temperature, their ratio is also a constant that
is equal to the equilibrium constant K.<span>
K = Kf/Kr.
Kr = Kf/K = </span>2,3·10⁶ 1/s ÷ 4,0·10⁸ 1/s = 5,75·10⁻¹.