The continental crust
Hope it helps!!
Answer:
11 m/s
Explanation:
Draw a free body diagram. There are two forces acting on the car:
Weigh force mg pulling down
Normal force N pushing perpendicular to the incline
Sum the forces in the +y direction:
∑F = ma
N cos θ − mg = 0
N = mg / cos θ
Sum the forces in the radial (+x) direction:
∑F = ma
N sin θ = m v² / r
Substitute and solve for v:
(mg / cos θ) sin θ = m v² / r
g tan θ = v² / r
v = √(gr tan θ)
Plug in values:
v = √(9.8 m/s² × 48 m × tan 15°)
v = 11.2 m/s
Rounded to 2 significant figures, the maximum speed is 11 m/s.
For speed you can differentiate the equation, for acceleration you can again differentiate the equation .
at t=0 the particle is slowing down , when you get equation for velocity put t=0 then only -1 is left
A) The resultant force is 30.4 N at 
B) The resultant force is 18.7 N at 
Explanation:
A)
In order to find the resultant of the two forces, we must resolve each force along the x- and y- direction, and then add the components along each direction to find the components of the resultant.
The two forces are:
at
above x-axis
at
above y-axis
Resolving each force:


So, the components of the resultant are:

And the magnitude of the resultant is:

And the direction is:

B)
In this case, the 15 N is applied in the opposite direction to the 20 N force. Therefore we need to re-calculate its components, keeping in mind that the angle of the 15 N force this time is

So we have:

So, the components of the resultant this time are:

And the magnitude is:

And the direction is:

Learn more about vector addition:
brainly.com/question/4945130
brainly.com/question/5892298
#LearnwithBrainly