1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex787 [66]
3 years ago
9

The edge of a cube measures 3.5 x 10 ^ -2 meters. What is the volume of the cube in cubic meters? WRITE Your ANSWERS IN SCIENTIF

IC NOTATION. ASAP
Mathematics
1 answer:
Crank3 years ago
7 0

The volume of given cube is: 4.29 * 10^{-5} cubic meters

Step-by-step explanation:

Volume of a cube is given by:

V = a^3

Given

Edge of the cube = 3.5*10^{-2}

Putting the value of edge

V = (3.5*10^{-2})^3\\V = 42.875 * (10^{-2})^3\\V = 42.9 * 10 ^{-2*3}\\V = 42.9 * 10^{-6}\\V = 4.29 * 10 * 10 ^{-6}\\V = 4.29 * 10^{-5}\ cubic\ meters

The volume of given cube is: 4.29 * 10^{-5} cubic meters

Keywords: Volume, cube, scientific notation

Learn more about scientific notation at:

  • brainly.com/question/10703930
  • brainly.com/question/10772025

#LearnwithBrainly

You might be interested in
Evaluate the following numerical expressions. 6 + 23 • 3 =
klasskru [66]

6 + 23(3)

6 + 69

75

Hope this helps! ;)

3 0
2 years ago
Read 2 more answers
Ricardo has a spinner and a bag of marbles filled with 2 red marbles, 3 green marbles, and 3 blue marbles. What is the probabili
Alexandra [31]
1/16!!!!!!!!!! Is the correct
8 0
2 years ago
Can you help me I will give you brainiest answer
Gemiola [76]
The first one is 20 and the second one is 19 and the third one is 25 and the fourth one is 15 and the fifth one is 11 and the sixth one is 28
5 0
2 years ago
Solve the following equation 2x=12
Luden [163]
Let's solve your equation step-by-step.
2
x
=
12
Step 1: Divide both sides by 2.
2
x
2
=
12
2
x
=
6
Answer:
x
=
6

6 0
1 year ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Solve for x and explain the steps in your answer. Please Help :/
    6·1 answer
  • 4 times the difference of 12 and 7<br>is divided by<br>5.​
    12·2 answers
  • The hawks lost eighty three games they won 14 more than they lost. how many games did they win?
    11·2 answers
  • Explain how to write the rational number 3.21 in the form a/b
    8·1 answer
  • 4. The slope of the tangent for the function y = 1x is 1/(2(x). Find the equation of the tangent line at the point x = 1. Illust
    12·1 answer
  • Pleasee i need help pleaseeee help nowww​
    6·1 answer
  • Martin deposited $2,000 into an account that earned 5% simple interest over 10 years. What is the amount of interest earned afte
    14·1 answer
  • Find the value of x.<br> (3x - 4)<br> X<br> (5x - 2)
    6·1 answer
  • Angelina has a fish tank in the shape of a rectangular prism. The fish tank is 20 inches long, 7 inches wide, and 12 inches tall
    11·1 answer
  • El doble de un número más de 3 unidades
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!