Answer:
45.2
Step-by-step explanation:
the tenths is the first number to the right after the decimal
Answer:
y = -1/3x + 2
Step-by-step explanation:
Divide everything by 2
We need to find the base x in the following equation:

First, lets convert 365 from base 7 to base 10. This is given by

where the upperindex denotes the position of eah number. This gives

that is, 365 based 7 is equal to 194 bases 10.
Now, lets do the same for 43 based x. Lets convert 43 based x to base 10:

where again, the superindex 0 and 1 denote the position 0 and 1 in the number 43. This gives

Now, we have all number in base 10. Then, our first equation can be written in base 10 as

For simplicity, we can omit the 10 and get

so, we can solve this equation for x. By combining similar terms. we have

and by moving 197 to the right hand side, we obtain

Finally, we get

Therefore, the solution is x=5
Answer:
No
Step-by-step explanation:
A rational number is a number that can be expressed as a fraction p/q where p and q are integers and q!=0. A rational number p/q is said to have numerator p and denominator q. Numbers that are not rational are called irrational numbers. The real line consists of the union of the rational and irrational numbers. The set of rational numbers is of measure zero on the real line, so it is "small" compared to the irrationals and the continuum.
The set of all rational numbers is referred to as the "rationals," and forms a field that is denoted Q. Here, the symbol Q derives from the German word Quotient, which can be translated as "ratio," and first appeared in Bourbaki's Algèbre (reprinted as Bourbaki 1998, p. 671).
Any rational number is trivially also an algebraic number.
Examples of rational numbers include -7, 0, 1, 1/2, 22/7, 12345/67, and so on. Farey sequences provide a way of systematically enumerating all rational numbers.
The set of rational numbers is denoted Rationals in the Wolfram Language, and a number x can be tested to see if it is rational using the command Element[x, Rationals].
The elementary algebraic operations for combining rational numbers are exactly the same as for combining fractions.
It is always possible to find another rational number between any two members of the set of rationals. Therefore, rather counterintuitively, the rational numbers are a continuous set, but at the same time countable.