According to Dalton's Atomic Theory, the <em>Law of Definite Proportion is applied when a compound is always made up by a fixed fraction of its individual elements.</em> This is manifested by the balancing of the reaction.
The reaction for this problem is:
H₂ + Cl₂ → 2 HCl
1 mol of H₂ is needed for every 1 mole of Cl₂. Assuming these are ideal gases, the moles is equal to the volume. So, if equal volumes of the reactants are available, they will produce twice the given volumes of HCl.
<u>Answer:</u> The pH of the buffer is 4.61
<u>Explanation:</u>
To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(\frac{[\text{conjuagate base}]}{[\text{acid}]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5B%5Ctext%7Bconjuagate%20base%7D%5D%7D%7B%5B%5Ctext%7Bacid%7D%5D%7D%29)
We are given:
= negative logarithm of acid dissociation constant of weak acid = 4.70
= moles of conjugate base = 3.25 moles
= Moles of acid = 4.00 moles
pH = ?
Putting values in above equation, we get:

Hence, the pH of the buffer is 4.61
Our bone marrow continuously makes new red and white blood cells. The lymphatic system consists of the bone marrow, the spleen, the thymus (in young people), and lymph nodes.
hey there!:
H2S(aq) <=> H⁺(aq) + HS⁻(aq)
K'c = [H⁺][HS⁻]/[H₂S] = 9.5*10⁻⁸
HS⁻(aq) <=> H⁺(aq) + S²⁻(aq)
K"c = [H⁺][S²⁻]/[HS⁻] = 1.0*10⁻¹⁹
H₂S(aq) <=> 2 H⁺(aq) + S²⁻(aq)
Kc = [H⁺]²[S²⁻] / [H₂S]
= [H+][HS⁻] / [H₂S] * [H⁺][S²⁻]/[HS⁻]
= K'c *K"c
= ( 9.5*10⁻⁸ ) * ( 1.0 x 10⁻¹⁹ )
= 9.5*10⁻²⁷
Hope this helps!
Hello There!
The solubility of gases in liquids increases with increasing pressure.
Answer: True
Hope This Helps You!
Good Luck :)
- Hannah ❤