1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nuetrik [128]
3 years ago
14

Which of the following is an example of distance equaling displacement?

Physics
1 answer:
AleksandrR [38]3 years ago
3 0

Answer:

D

Explanation:

The student had displaced their in the class when she left. The phone is what's displaced and student leaving equals distance.

You might be interested in
Which event is an example of condensation?
ale4655 [162]

Answer: D

If the fog disappears when the Sun comes out, then this is an example of condensation because:

the Sun actually dries up the fog, and it makes it into higher clouds.

Hope this helps you!

3 0
3 years ago
The legal tradition that kept women from owning property and holding public office came to the United States from
scoundrel [369]
<span>The legal tradition that kept women from owning property and holding public office came to the United States from: C. Britain.</span>
6 0
3 years ago
Read 2 more answers
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
As pressure decreases, temperature
Pani-rosa [81]
Temperature doesn't do anything, the boiling point of stuff decreases. If you put water in a vacuum chainber then it will start to boil
5 0
3 years ago
The difference between the frequency fff and the frequency ωωomega is that fff is measured in cycles per second or hertz (abbrev
Kisachek [45]

Answer:

Radians

Explanation:

The angular speed is a measure of the rotation speed of a body. It is defined as the angle rotated by a unit of time. Thus, It refers to the angular displacement per unit time and is designated by the Greek letter \omega. Its unit in the International System is radian per second (rad / s).

6 0
3 years ago
Other questions:
  • A motorcycle stunt driver zooms off the end of a cliff at a speed of 30 meters per second. If he lands after 0.75 seconds, what
    11·1 answer
  • Sug<br>. To repeat the experiment what is it?<br>​
    8·1 answer
  • A planet is discovered orbiting the star 51 Peg with a period of four days (0.01 years). 51 Peg has the same mass as the Sun. Me
    14·1 answer
  • A hiker walks 9.4 miles at an angle of 60° south of west. Find the west and south components of the walk. Round your answers to
    14·1 answer
  • Which of the following observations represent conclusive evidence of an interaction? (Select all that apply.)
    6·1 answer
  • a sound wave has a frequency of 1192 hertz. all sound waves in air travel at 322m/s. find the wave length of the sound wave
    12·1 answer
  • PLEASE HELP
    14·2 answers
  • A block is attached to the end of a horizontal ideal spring and rests on a frictionless surface. The block is pulled so that the
    11·1 answer
  • At what point will the electric field of a charged object be strongest?
    5·1 answer
  • Medium frequency waves are called what
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!