Answer:
First, the different indices of refraction must be taken into account (in different media): for example, the refractive index of light in a vacuum is 1 (since vacuum = c). The value of the refractive index of the medium is a measure of its "optical density": Light spreads at maximum speed in a vacuum but slower in others transparent media; therefore in all of them n> 1. Examples of typical values of are those of air (1,0003), water (1.33), glass (1.46 - 1.66) or diamond (2.42).
The refractive index has a maximum value and a minimum value, which we can calculate the minimum value by means of the following explanation:
The limit or minimum angle, α lim, is defined as the angle of refraction from which the refracted ray disappears and all the light is reflected. As in the maximum value of angle of refraction, from which everything is reflected, is βmax = 90º, we can know the limit angle (the minimum angle that we would have to have to know the minimum index of refraction) by Snell's law:
βmax = 90º ⇒ n 1x sin α (lim) = n 2 ⇒ sin α lim = n 2 / n 1
Explanation:
When a light ray strikes the separation surface between two media different, the incident beam is divided into three: the most intense penetrates the second half forming the refracted ray, another is reflected on the surface and the third is breaks down into numerous weak beams emerging from the point of incidence in all directions, forming a set of stray light beams.
Answer:
See the answer below
Explanation:
1. Speed is calculated as the ratio of distance and time. Hence, Jame's speed can be calculated as:
400/5 km/hr = 80 km/hr
The unit for the speed would be km/hr. This can also be converted to m/s:
80 km = 80,000 m
1 hr = 3,600 s
80 km/hr = 80,000/3600 m/s = 22.22 m/s
2. Since James drove 400 km in 5 hours, the distance he drove is 400 km.
3. The time it took for James to get there is 5 hours.
1 mile. Is this a joke lol
Answer:
The answer is "Option C".
Explanation:
Computation modeling is used as the software for math, physics, or software engineering in the simulation and study of complicated processes. The software framework incorporates many parameters, that characterize the model under study. It is a computer program, in which the mathematical formula is generated by computers and research complex systems.
Answer:
The answer to the question is
The ball will go 0.14 meters high if the gun is aimed vertically
Explanation:
The energy in the spring → Energy, E = 
Where E = energy in the spring
k = Spring constant
x = Spring compression or stretch
Therefore E = 
The spring energy is transferred to the ball as kinetic energy based on the first law of thermodynamics which states that energy is neither created nor destroyed
Kinetic energy = KE = 
From which v =
=
= 1.66 m/s
from v² =u² - 2·a·S
Where v = final velocity = 0 m/s
u = initial velocity = 1.66 m/s
a = g = Acceleration due to gravity
S = height
Therefore 0 = 1.66² - 2×9.81×S
or S = 1.66² ÷ (2×9.81) = 0.14 m