Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Next, we compute the reacting moles of each reactants:


Then, as magnesium and hydrohloric acid are in a 1:2 molar ratio 0.153 moles of magnesium will completely react with 0.306 moles of hydrochloric acid yet we only have 0.144 moles, therefore, limiting reactant is hydrochloric acid. Thus, we compute the produced moles of hydrogen:

Finally, we use the ideal gas equation with T=298K and 1atm (STP conditions) to compute the liters of hydrogen gas:

Best regards.
The balanced equation is
2SO
2
+
O
2
→
2SO
3
Answer:
for the given reaction is -99.4 J/K
Explanation:
Balanced reaction: 
![\Delta S^{0}=[1mol\times S^{0}(NH_{3})_{g}]-[\frac{1}{2}mol\times S^{0}(N_{2})_{g}]-[\frac{3}{2}mol\times S^{0}(H_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20S%5E%7B0%7D%3D%5B1mol%5Ctimes%20S%5E%7B0%7D%28NH_%7B3%7D%29_%7Bg%7D%5D-%5B%5Cfrac%7B1%7D%7B2%7Dmol%5Ctimes%20S%5E%7B0%7D%28N_%7B2%7D%29_%7Bg%7D%5D-%5B%5Cfrac%7B3%7D%7B2%7Dmol%5Ctimes%20S%5E%7B0%7D%28H_%7B2%7D%29_%7Bg%7D%5D)
where
represents standard entropy.
Plug in all the standard entropy values from available literature in the above equation:
![\Delta S^{0}=[1mol\times 192.45\frac{J}{mol.K}]-[\frac{1}{2}mol\times 191.61\frac{J}{mol.K}]-[\frac{3}{2}mol\times 130.684\frac{J}{mol.K}]=-99.4J/K](https://tex.z-dn.net/?f=%5CDelta%20S%5E%7B0%7D%3D%5B1mol%5Ctimes%20192.45%5Cfrac%7BJ%7D%7Bmol.K%7D%5D-%5B%5Cfrac%7B1%7D%7B2%7Dmol%5Ctimes%20191.61%5Cfrac%7BJ%7D%7Bmol.K%7D%5D-%5B%5Cfrac%7B3%7D%7B2%7Dmol%5Ctimes%20130.684%5Cfrac%7BJ%7D%7Bmol.K%7D%5D%3D-99.4J%2FK)
So,
for the given reaction is -99.4 J/K
The pH at the equivalence point always not equal to 7 in a neutralization titration when titration occur between weak acid and weak base , strong acid and weak base or strong base weak acid. The reason behind it is given as,
- At equivalence point the product is present by reacting from acid and base.
- So, when weak acid titrate with strong base then the solution will be weak base at equivalence point.
When strong acid is neutralize with strong base then it form neutral product at the equivalence point. Hence the final conclusion is that the pH of the solution in which titration is takes place between strong acid and strong base is 7 that is neutral left titration between all type of acids and bases ha pH not equal to 7 .
learn more about equivalence point
brainly.com/question/4518249
#SPJ4