Answer:
100 g of water has the highest number of moles
Explanation:
Recall that the number of moles is obtained as given mass/formula weight
For HCl;
number of moles = 100g/36.5g/mol = 2.7 moles
For H2O;
number of moles = 100g/18g/mol = 5.5 moles
For MgCO3
number of moles = 100g/84.3 g/mol = 1.2 moles
For AlCl3
number of moles = 100g/133.3g/mol = 0.75 moles
For NaCl
number of moles = 100g/58.4 g/mol = 1.7 moles
The reaction;
O(g) +O2(g)→O3(g), ΔH = sum of bond enthalpy of reactants-sum of food enthalpy of products.
ΔH = ( bond enthalpy of O(g)+bond enthalpy of O2 (g) - bond enthalpy of O3(g)
-107.2 kJ/mol = O+487.7kJ/mol =O+487.7 kJ/mol +487.7kJ/mol =594.9 kJ/mol
Bond enthalpy (BE) of O3(g) is equals to 2× bond enthalpy of O3(g) because, O3(g) has two types of bonds from its lewis structure (0-0=0).
∴2BE of O3(g) = 594.9kJ/mol
Average bond enthalpy = 594.9kJ/mol/2
=297.45kJ/mol
∴ Averange bond enthalpy of O3(g) is 297.45kJ/mol.
Answer:
Nuclear fusion plays an important role in making elements that are heavier than helium.
Explanation:
Nucleosynthesis is the process by which new atomic nuclei are created from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in a process called Big Bang nucleosynthesis.
In order to synthesize a new element, there must be a change in the number of protons. We should remember that elements are known by the number of their protons as it represents their atomic number.
Elements heavier than helium are formed by nuclear nucleosynthesis in which nuclear fusion plays a very crucial role as typified by the equations shown in the question.
Hydrogen .<span>carbon dioxide is CO2 and </span><span>glucose is C6H12O6</span>
<h3>
Answer:</h3>
11.84 mol CoF₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
- Analyzing Reactions RxN
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Unbalanced] CoCl₂ + F₂ → CoF₂ + Cl₂
[RxN - Balanced] CoCl₂ + F₂ → CoF₂ + Cl₂
[Given] 11.84 moles CoCl₂
[Solve] moles CoF₂
<u>Step 2: Identify Conversions</u>
[RxN] 1 mol CoCl₂ → 1 mol CoF₂
<u>Step 3: Stoich</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:
