Answer:

Explanation:
Let the mass of bullet is m, initial velocity of bullet is vi and c be the specific heat of the bullet.
Kinetic energy, K = 1/2 mvi^2
According to the question, 50% of the kinetic energy is equal to the heat energy absorbed by the bullet.
50% of K = mass of bullet x specific heat x rise in temperature
1/4 mvi^2 = m x c x ΔT

Answer:
The working of an electric motor is based on the assumption that a conductive current generates a magnetic field around it. Consider the following situation,
Take two bar magnets, and leave a small space between the poles facing each other. Now, take a small conductive wire length and make a loop. Keep this connection between the magnets, so that it is still inside the magnet’s area of influence. Now for the final part. Attach loop ends to battery terminals.
As electricity flows through your simple circuit, you will find that your loop “moves.” The magnet’s magnetic field interferes with that generated by the conductor’s electrical current flow. Because the loop has become a magnet, it will draw one side of it to the magnet’s north pole, and the other to the south pole. That causes the loop to rotate continuously. This is the idea of an electric motor working.
<h2>
The average speed of the moon around the earth is 1021.74 m/s</h2>
Explanation:
Radius of moon around earth, r = 3.84 × 10⁸ m
Circumference of orbit = 2πr = 2 x 3.14 x 3.84 × 10⁸
Circumference of orbit = 2.41 x 10⁹ m
Time taken, t = 27.3 days = 27.3 x 24 x 60 x 60 = 2358720 seconds
We have
Circumference of orbit = Speed of moon x Time taken
2.41 x 10⁹ = Speed of moon x 2358720
Speed of moon = 1021.74 m/s
The average speed of the moon around the earth is 1021.74 m/s
<u>If the disk turns with constant angular velocity, the following statements about it are true
</u>
- The linear acceleration of Q is twice as great as the linear acceleration of P
- is moving twice Q as fast as P.
Answer: Options D and E
<u>Explanation:
</u>
Let us consider that R is the radius of the circular disc. So as Q is on the rim, so the distance of Q from the centre of the disc is R and as P is the midpoint between centre and rim of the disk, so the distance of P from the centre is R/2.
As we know that the angular velocity of the circular disk will be equal to the ratio of distance covered by that point to the time taken. So the angular velocity at point Q will be

As R is the distance of point Q from the centre of the disc.
Similarly
,

So if we equate v with v’ we obtain that

Therefore, the point Q will be moving twice as fast as P. As the velocity of Q is more than O, the linear acceleration of point Q will also be twice as great as the linear acceleration of P.
This is because acceleration is directly proportional to the rate of change in velocity. So if velocity increases in the factor of 2, the acceleration of point Q will also increase twice with respect to point P.