The ball's horizontal component of velocity (ie it's horizontal speed) is 20 cos 40degrees. Without knowing the distance of the ball to the wall it's difficult to go further ...
The reason why there is a difference between free-fall acceleration is a centrifugal force.
I attached a diagram that shows how this force aligns with the force of gravity.
From the diagram we can see that:

Where g' is the free-fall acceleration when there is no centrifugal force, r is the radius of the planet, and w is angular frequency of planet's rotation.

is the latitude.
We can calculate g' and wr^2 from the given conditions in the problem.

Our final equation is:

Colatitude is:

The answer is:
Answer: a) 11.76 m/s b) 7.056 m
Explanation:
The described situation is as follows:
An object is dropped from the top of a tower and when measuring the time it takes to reach the ground that turns out to be 0.02 minutes.
This situation is related to free fall, this also means we have constant acceleration, hence the equations we will use are:
(1)
(2)
Where:
Is the final velocity of the object
Is the initial velocity of the object (it was dropped)
is the acceleration due gravity
is the height of the tower
is the time it takes to the object to reach the ground
b) Begining with (1):
(3)
(4)
(5) This is the final velocity of the object
a) Substituting (5) in (2):
(6)
Clearing
:
(7)
(8) This is the height of the tower
Answer:
The direct answer to the question as written is as follows: nothing happens to gravity when someone jumps up - gravity continues exerting a force on the body of that particular someone proportional to (mass of someone) x (mass of Earth) / (distance squared). What you might be asking, however, is what is the net force acting on the body of someone jumping up. At the moment of someone jumping up there is an upward acceleration, i.e., an upward-directed force which counteracts the gravitational force - this is the net force ( a result of the jump force minus gravity). From that moment on, only gravity acts on the body. The someone moves upward gradually decelerating to the downward gravitational acceleration until they reaches the peak of the jump (zero velocity). Then, back to Earth.
Answer:
Explanation:
False --> A cylindrical capacitor is essentially a parallel plate capacitor rolled into a tube. This is because a cylindrical capacitor comprises two cylinders.
False --> The dielectric constant indicates the distance by which the two plates of a capacitor are separated.
True --> The charge on a capacitor increases quickly at first, then much more slowly as the capacitor charges. This is because the charge on the capacitor increases exponentially.
False --> The voltage across a capacitor in an RC circuit increases linearly during charging. This is because the voltage increases exponentially.
True --> One of the principal purposes of a capacitor is to store electric potential energy.
True --> A capacitor charges rapidly when connected to an RC circuit with a battery. This is because a cylindrical capacitor is basically a parallel plate capacitor rolled into a tube.