Human cells don't have<span> a </span>cell wall<span> in the same way that plants </span>do. We<span> </span>have cell<span> membranes which are more malleable structures than the </span>rigid cell walls<span> of plants.</span>
In this case, the object is thrown upwards from the building. Therefore, it first achieves some height before its starts dropping.
Now, when going upwards
v^2 = u^2 - 2gs
Where,
v = final velocity
u = initial velocity
g = gravitational acceleration
s = height achieved from the top of he bulding
Using the values given;
v = 0 (comes into rest before it starts dropping)
u = 21.82 mi/h = 32 ft/s
g = 9.81 m/s^2 = 32.174 ft/s^2
Then,
0^2 = 32^2 - 2*32.174*s
32^2 = 2*32.174*s
s = (32^2)/(2*32.174) = 15.91 ft
After achieving that height, it starts to drop from rest to maximum velocity when it hits the ground.
Applying the same formula;
v^2 = u^2 + 2gs
Where;
v = velocity when it hits the ground
u = initial velocity, 0 ft/s as it starts from rest
s = 15.91+1.6*10^2 = 15.91+160 = 175.91 ft
Therefore,
v^2 = 0^2 + 2*32.174*175.91
v^2 = 11319.68
v = Sqrt (11319.68) = 106.39 ft/s ≈ 32.43 m/s moving downwards.
<h2>Answer: remain stationary</h2>
Stationary waves (so called because they seem to be immobile) occur when two waves interfere with the <u>same frequency, amplitude but with different direction</u>, along a line with a phase difference of half wavelength.
In this kind of waves there are two types of points:
The nodes, which are points that remain motionless or stationary and do not vibrate. They are due to the destructive interference of both waves when they meet.
The antinodes, which are points that vibrate with a maximum vibration amplitude. They are due to the non-destructive interference of both waves.
According to this explanation and comparing it with the description, when this two waves pass through each other, the point P will become a node, hence<u> it will remain stationary</u>.
C) Staring At Someone's Body, Giving Them The “Once Over”
Answer:
It's B.
Explanation:
Found answer off Quizlet.