Explanation:
It doesn't depends upon other.
It have it's own identity.
It's a lot easier to measure temperature than to measure the motion of component particles.
Answer:
Juno scientific payload includes:
- A gravity/radio science system (Gravity Science)
- A six-wavelength microwave radiometer for atmospheric sounding and composition (MWR)
- A vector magnetometer (MAG)
- Plasma and energetic particle detectors (JADE and JEDI)
- A radio/plasma wave experiment (Waves)
- An ultraviolet imager/spectrometer (UVS)
- An infrared imager/spectrometer (JIRAM)
Explanation:
Each mission of NASA has a specific set of instruments that it uses to perform scientific experiments on the desired heavenly body. In case of Juno, the mission for Jupiter has a series of instruments that would study domains of gravitational forces, magnetic effect, particle detection, radiation detection, UV/IR imaging, and plasma experiments.
I like your handwriting boy
Given:
u(initial velocity)=0
v(final velocity)= 10 m/s
t= 4 sec
Now we know that
v= u + at
Where v is the final velocity
u is the initial velocity
a is the acceleration measured in m/s^2
t is the time measured in sec
10=0+ax4
a=10/4
a=2.5 m/s^2