For the velocity graph: start at 0s and 4m/s and draw a straight line to 2s and 2 m/s. Then draw a straight horizontal line to 4s and 2m/s
For the acceleration graph: start with a horizontal line from 0s and 2m/s/s to 2s and 2m/s/s. The draw another line from 2 s and 0m/s/s to 4 s and 0m/s/s
Answer:
i don't get what I have to do
As Potential energy =mgh
m= 0.95kg
h=3 meter
g = 9.8 m/sec^2. ( acceleration due to gravity)
So P.E =(0.95)(9.8)(3)kgm^2/s^2
P.E =27.93 joules
The work done by force on a spring hung from the ceiling will be 1.67 J
Any two things with mass are drawn together by the gravitational pull. We refer to the gravitational force as attractive because it consistently seeks to draw masses together rather than pushing them apart.
Given that a spring is hung from the ceiling with a 2.0-kg mass suspended hung from the spring extends it by 6.0 cm and a downward external force applied to the mass extends the spring an additional 10 cm.
We need to find the work done by the force
Given mass is of 2 kg
So let,
F = 2 kg
x = 0.1 m
Stiffness of spring = k = F/x
k = 20/0.006 = 333 n/m
Now the formula to find the work done by force will be as follow:
Workdone = W = 0.5kx²
W = 0.5 x 333 x 0.1²
W = 1.67 J
Hence the work done by force on a spring hung from the ceiling will be 1.67 J
Learn more about force here:
brainly.com/question/12970081
#SPJ4
Answer:
68.585m/sec , 779.1 N
Explanation:
To feel weightless, centripetal acceleration must equal g (9.8m/sec^2). The accelerations then cancel.
From centripetal motion.
F =( mv^2)/2
But since we are dealing with weightlessness
r = 480m
g = 9.8m/s^2
M also cancels, so forget M.
V^2 = Fr
V = √ Fr
V =√ (9.8 x 480) = 4704
= 68.585m/sec.
b) Centripetal acceleration = (v^2/2r) = (68.585^2/960) = 4704/960
= 4.9m/sec^2.
Weight (force) = (mass x acceleration) = 159kg x (g - 4.9)
159kg × ( 9.8-4.9)
159kg × 4.9
= 779.1N