Answer:
X₃₁ = 0.58 m and X₃₂ = -1.38 m
Explanation:
For this exercise we use Newton's second law where the force is the Coulomb force
F₁₃ - F₂₃ = 0
F₁₃ = F₂₃
Since all charges are of the same sign, forces are repulsive
F₁₃ = k q₁ q₃ / r₁₃²
F₂₃ = k q₂ q₃ / r₂₃²
Let's find the distances
r₁₃ = x₃- 0
r₂₃ = 2 –x₃
We substitute
k q q / x₃² = k 4q q / (2-x₃)²
q² (2 - x₃)² = 4 q² x₃²
4- 4x₃ + x₃² = 4 x₃²
5x₃² + 4 x₃ - 4 = 0
We solve the quadratic equation
x₃ = [-4 ±√(16 - 4 5 (-4)) ] / 2 5
x₃ = [-4 ± 9.80] 10
X₃₁ = 0.58 m
X₃₂ = -1.38 m
For this two distance it is given that the two forces are equal
Answer:
The velocity of the ball before it hits the ground is 381.2 m/s
Explanation:
Given;
time taken to reach the ground, t = 38.9 s
The height of fall is given by;
h = ¹/₂gt²
h = ¹/₂(9.8)(38.9)²
h = 7414.73 m
The velocity of the ball before it hits the ground is given as;
v² = u² + 2gh
where;
u is the initial velocity of the on the root = 0
v is the final velocity of the ball before it hits the ground
v² = 2gh
v = √2gh
v = √(2 x 9.8 x 7414.73 )
v = 381.2 m/s
Therefore, the velocity of the ball before it hits the ground is 381.2 m/s
The problem seems to be incomplete because there is no question. However, from the problem description, the logical question is to find he acceleration needed by the jet to land on the airplane carrier. The working equation would be:
2ad = v₂² - v₁²
Since the jet stops, v₂ = 0. Substituting the values:
2(a)(95 m) = 0² - [(240 km/h)(1000 m/1 km)(1h/3600 s)]²
Solving for a,
<em>a = -23.39 m/s² (the negative sign indicates that the jet is decelerating)</em>