Explanation:
1st- states that when two bodies interact, they apply forces to one another that are equal in magnitude and opposite in direction.
2nd- states that the time rate of change of the momentum of a body is equal in both magnitude and direction to the force imposed on it. (most important law)
3rd- states that when two bodies interact, they apply forces to one another that are equal in magnitude and opposite in direction. (law of action/reaction)
The correct answer is Metals.
Generally, the specific heat of metals is low. Very high specific heat exists in water.A physical feature of matter known as heat capacity or thermal capacity is the quantity of heat that must be applied to an object in order to cause a unit change in temperature. Heat capacity is measured in joules per kelvin (J/K), the SI unit. A broad property is heat capacity. Use the following equation to determine heat capacity: heat capacity = E / T, where E is the quantity of delivered heat energy and T is the change in temperature. The formula would be as follows, for instance, if it takes 2,000 Joules of energy to raise a block's temperature by 5 degrees Celsius: 2,000 Joules per °C is the heat capacity.
Learn more about heat capacity here :-
brainly.com/question/13499849
#SPJ4
Answer:
All planets have an elliptical orbit
all planets have roughly the same SHAPE of orbit
Answer:
The genetic makeup in a organism.
Explanation:
Answer:
143.352 watt.
Explanation:
So, in the question above we are given the following parameters or data or information that is going to assist us in answering the question above efficiently. The parameters are:
"A 1.8 m wide by 1.0 m tall by 0.65m deep home freezer is insulated with 5.0cm thick Styrofoam insulation"
The inside temperature of the freezer = -20°C.
Thickness = 5.0cm = 5.0 × 10^-2 m.
Step one: Calculate the surface area of the freezer. That can be done by using the formula below:
Area = 2[ ( Length × breadth) + (breadth × height) + (length × height) ].
Area = 2[ (1.8 × 0.65) + (0.65 × 1.0) + (1.8 × 1.0)].
Area = 7.24 m^2.
Step two: Calculate the rate of heat transfer by using the formula below;
Rate of heat transfer =[ thermal conductivity × Area (T1 - T2) ]/ thickness.
Rate of heat transfer = 0.022 × 7.24(25+20)/5.0 × 10^-2 = 143.352 watt.